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lasma lipids, including total cholesterol, low-density lipo-

protein cholesterol (LDL-C), high-density lipoprotein cho-

lesterol (HDL-C), and triglycerides, are heritable risk
factors for atherosclerotic cardiovascular diseasel2. Under-
standing the inherited basis for plasma lipid levels has led to new
treatments and to tests to identify individuals at risk for disease.
Advances in technologies to characterize DNA sequence variants
(i.e., Sanger sequencing, genotyping arrays, exome sequencing)
have progressively allowed us to solve monogenic forms of dys-
lipidemia and to uncover common DNA sequence variants as
well as rare mutations that contribute to plasma lipid levels in the
population. However, due to the inherent limitations of geno-
typing arrays and exome sequencing, the non-coding regions of
the genome remains incompletely characterized, particularly for
rare mutations. In addition, the relative contribution of common
DNA sequence variants and rare coding mutations to extreme
lipid values in the population has not been delineated.

It is now possible to directly enumerate the whole-genome
sequences of a large number of individuals. When performed at
sufficient depth of coverage (>20-fold coverage per base), whole-
genome sequencing (WGS) can detect single nucleotide poly-
morphisms (SNPs), insertions, and deletions across the allele
frequency spectrum in both non-coding and coding regions.
These advances allow us to test the incremental value of WGS as a
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Medicine (TOPMed) research program) and was >20X for EST
and FIN (Supplementary Fig. 2). The mean (SD) attained
coverage for >30X target samples was 37.1(5.4)X and for >20X
target was 29.8(5.4)X.

After performing quality control, a total of 189 million unique
variants were discovered across all datasets. Total variant count
characteristics varied by cohort due to sample sizes, relatedness,
ethnicity, and population history (Fig. 2). As expected, the MESA
cohort, of largely unrelated individuals of four diverse ethnicities,
had the most variants per individual while the OOA cohort, a
founder population of European ancestry, had the fewest variants
per individual (Supplementary Table 3). The median number of
variants, or sites with alleles differing from the hgl9 reference
genome, per individual was 3,391,000, of which on average 4878
were observed in only a single individual.

Common plus low-frequency variant association study. We first
analyzed common and low-frequency variants, i.e., those that
occur with enough minor alleles to provide robust individual
association test statistics. We considered variants that had a
minor allele frequency (MAF) >0.1% within at least one of the
three WGS variant callsets (minor allele count >16 for the FHS/
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approach. The median combined MAF per gene was 0.25%
[interquartile range 0.090-0.69%] (Supplementary Fig. 8). To
account for known bidirectional effects of disruptive mutations
in some Mendelian dyslipidemia genes, we accordingly used a
mixed model Sequence Kernel Association Test (SKAT)112, Six
genes associated with lipids at an exome-wide level (« = 0.05/
~20,000 protein-coding genes =2.5%10-6) (LDLR, APOB,
PCSK9, and APOE for LDL-C, LCAT for HDL-C, and APOC3
for triglycerides). Each has been previously established as a
cause of Mendelian forms of dyslipidemia (Supplementary
Table 9).

Rare variant association study of non-coding variants. Next, we
sought to determine whether rare variants in non-coding
regions associate with plasma lipids. We used four approaches
to aggregate rare, non-coding variants. (Fig. 3). First, we
aggregated variants within “sliding windows” of 3kb in
length1314, Second, we connected a non-coding variant to a
gene if it resided in a segment annotated as an enhancer (and
within 20 kb of a gene) or a region annotated as a promoter
(and within 5kb of the TSS of a gene). Third, using gene
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Among AA participants, a monogenic mutation was
associated with an odds ratio of 7.43 (95% CI 3.01-18.35) for
extremely high LDL-C, whereas a high polygenic score
associated with an odds ratio of 3.2 (95% CI 2.1-4.89). In AA
individuals, those who carried a monogenic mutation had
41 mg/dl higher LDL-C (when compared with non-carriers;
P=2.3x10"7), greater than that observed among EA indivi-
duals, and those who had a high polygenic score had 17 mg/dI
greater LDL-C (when compared with all others; P = 6.4 x 10~10),
less than the effect observed among EA individuals. Of the 217 AA
participants with extremely high LDL-C, 3% carried a monogenic
mutation and 13% had a high polygenic score. Across the
full spectrum of LDL-C polygenic score, every SD of the LDL-C
polygenic score was associated with 155mg/dl LDL-C
among EA (P=4x10"2"7) and 8.7 mg/dl LDL-C among AA
(P=1x10"%).

We replicated the association between a high polygenic score
and extremely high LDL-C in an independent sample, the ARIC

cohort. Among ARIC-EA (N = 7755) individuals, a high polygenic
score was associated with an odds ratio of 7.35 (95% CI 5.95-9.10;
P<2x10-16
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for blood lipid levels and for clinical interpretation. We repli-
cated associations for 28 common variant loci previously
associated with lipids in much larger genome-wide association
analyses. We identified an association for a low frequency 1-bp
deletion at 9p24.1 with HDL-C. We replicated burden asso-
ciations of rare coding mutations at known Mendelian lipid
genes. However, we did not detect any burden associations of
rare non-coding mutations through four different approaches.
Lastly, we developed a genome-wide polygenic score and
showed that such a score confers an effect size on LDL-C
similar to carrying a monogenic mutation and is present in ten-
fold more individuals with severe hypercholesterolemia than
monogenic mutations. At these sample sizes and for these
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MA), while 3266 JHS individuals were sequenced at University of Washington
Northwest Genomics Center (Seattle, WA). About 4601 MESA individuals were
additionally sequenced at the Broad Institute of Harvard and MIT as part of
TOPMED Phase 2. About 1180 Finnish FINRISK individuals and 2281 Estonian
Biobank participants were sequenced at the Broad Institute of Harvard and MIT
(Cambridge, MA). Three separate callsets were utilized due to timeline of avail-
ability as well as data use restrictions.

TOPMED phase 1 BAM files provided by the sequencing centers were
harmonized by the TOPMed Informatics Research Center (IRC) before joint
variant discovery and genotype calling across studies. In brief, sequence data were
received from each sequencing center in the form of bam files mapped to the 1000
Genomes hs37d5 build 37 decoy reference sequence. Processing was coordinated
and managed by the “GotCloud” processing pipeline
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set of correlations we observed would come from the actual data compared to
randomized data. To this end, we created a training set of actual observed
correlations (positive examples) and correlations computed after randomizing
which gene expression values were assigned to which genes (negative examples)
separately for each combination of cell type, chromatin state, and position relative
to the TSS. Each entry in the training set has five features corresponding to
correlations for each of the considered chromatin marks. There is a positive and a
corresponding negative entry for each instance of the specified chromatin state in
the specified cell type at the specified position relative to the TSS or within 5 kb of it
(for smoothing purposes). We trained a logistic regression classifier to discriminate
actual correlations with randomized correlations. We used the logistic regression
library implemented in the Weka package version 3.7.3 with the regularization
parameter set to 1
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