Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1.

Nat Med
Authors
Keywords
Abstract

Tissues with high metabolic rates often use lipids, as well as glucose, for energy, conferring a survival advantage during feast and famine. Current dogma suggests that high-energy-consuming photoreceptors depend on glucose. Here we show that the retina also uses fatty acid β-oxidation for energy. Moreover, we identify a lipid sensor, free fatty acid receptor 1 (Ffar1), that curbs glucose uptake when fatty acids are available. Very-low-density lipoprotein receptor (Vldlr), which is present in photoreceptors and is expressed in other tissues with a high metabolic rate, facilitates the uptake of triglyceride-derived fatty acid. In the retinas of Vldlr(-/-) mice with low fatty acid uptake but high circulating lipid levels, we found that Ffar1 suppresses expression of the glucose transporter Glut1. Impaired glucose entry into photoreceptors results in a dual (lipid and glucose) fuel shortage and a reduction in the levels of the Krebs cycle intermediate α-ketoglutarate (α-KG). Low α-KG levels promotes stabilization of hypoxia-induced factor 1a (Hif1a) and secretion of vascular endothelial growth factor A (Vegfa) by starved Vldlr(-/-) photoreceptors, leading to neovascularization. The aberrant vessels in the Vldlr(-/-) retinas, which invade normally avascular photoreceptors, are reminiscent of the vascular defects in retinal angiomatous proliferation, a subset of neovascular age-related macular degeneration (AMD), which is associated with high vitreous VEGFA levels in humans. Dysregulated lipid and glucose photoreceptor energy metabolism may therefore be a driving force in macular telangiectasia, neovascular AMD and other retinal diseases.

Year of Publication
2016
Journal
Nat Med
Volume
22
Issue
4
Pages
439-45
Date Published
2016 Apr
ISSN
1546-170X
URL
DOI
10.1038/nm.4059
PubMed ID
26974308
PubMed Central ID
PMC4823176
Links
Grant list
EY017017 / EY / NEI NIH HHS / United States
R01 EY017017 / EY / NEI NIH HHS / United States
EY024963 / EY / NEI NIH HHS / United States
R01 EY022275 / EY / NEI NIH HHS / United States
EY11254 / EY / NEI NIH HHS / United States
EY022275 / EY / NEI NIH HHS / United States
P01 HD18655 / HD / NICHD NIH HHS / United States
P30 HD018655 / HD / NICHD NIH HHS / United States
EY024864 / EY / NEI NIH HHS / United States
R01 EY024963 / EY / NEI NIH HHS / United States
U54 HD090255 / HD / NICHD NIH HHS / United States
143077 / Canadian Institutes of Health Research / Canada
R24 EY024864 / EY / NEI NIH HHS / United States