Liu Lab / en Researchers engineer in vivo delivery system for prime editing, partially restoring vision in mice /news/researchers-engineer-vivo-delivery-system-prime-editing-partially-restoring-vision-mice <span class="field field--name-title field--type-string field--label-hidden"><h1>Researchers engineer in vivo delivery system for prime editing, partially restoring vision in mice</h1> </span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"> <span>By Corie Lok</span> </span> <span class="field field--name-created field--type-created field--label-hidden"><time datetime="2024-01-08T06:29:17-05:00" class="datetime">January 8, 2024</time> </span> <div class="hero-section container"> <div class="hero-section__row row"> <div class="hero-section__content hero-section__content_left col-6"> <div class="hero-section__breadcrumbs"> <div class="block block-system block-system-breadcrumb-block"> <nav class="breadcrumb" role="navigation" aria-labelledby="system-breadcrumb"> <h2 id="system-breadcrumb" class="visually-hidden">Breadcrumb</h2> <ol> <li> <a href="/">Home</a> </li> <li> <a href="/news">News</a> </li> </ol> </nav> </div> </div> <div class="hero-section__title"> <div class="block block-layout-builder block-field-blocknodelong-storytitle"> <span class="field field--name-title field--type-string field--label-hidden"><h1>Researchers engineer in vivo delivery system for prime editing, partially restoring vision in mice</h1> </span> </div> </div> <div class="hero-section__description"> <div class="block block-layout-builder block-field-blocknodelong-storybody"> <div class="clearfix text-formatted field field--name-body field--type-text-with-summary field--label-hidden field__item"><p>By adapting virus-like particles to carry the machinery for a type of gene editing called prime editing, scientists have corrected disease-causing mutations in animals and increased editing efficiency.</p> </div> </div> </div> <div class="hero-section__author"> <div class="block block-layout-builder block-extra-field-blocknodelong-storyextra-field-author-custom"> By Sarah C.P. Williams </div> </div> <div class="hero-section__date"> <div class="block block-layout-builder block-field-blocknodelong-storycreated"> <span class="field field--name-created field--type-created field--label-hidden"><time datetime="2024-01-08T06:29:17-05:00" title="Monday, January 8, 2024 - 06:29" class="datetime">January 8, 2024</time> </span> </div> </div> </div> <div class="hero-section__right col-6"> <div class="hero-section__image"> <div class="block block-layout-builder block-field-blocknodelong-storyfield-image"> <div class="field field--name-field-image field--type-entity-reference field--label-hidden field__item"> <article class="media media--type-image media--view-mode-multiple-content-types-header"> <div class="field field--name-field-media-image field--type-image field--label-hidden field__item"> <picture> <source srcset="/files/styles/multiple_ct_header_desktop_xl/public/Gene_editors_mice_v4.png?itok=jj83HYnc 1x" media="all and (min-width: 1921px)" type="image/png" width="754" height="503"> <source srcset="/files/styles/multiple_ct_header_desktop_xl/public/Gene_editors_mice_v4.png?itok=jj83HYnc 1x" media="all and (min-width: 1601px) and (max-width: 1920px)" type="image/png" width="754" height="503"> <source srcset="/files/styles/multiple_ct_header_desktop/public/Gene_editors_mice_v4.png?itok=QoDCVeET 1x" media="all and (min-width: 1340px) and (max-width: 1600px)" type="image/png" width="736" height="520"> <source srcset="/files/styles/multiple_ct_header_laptop/public/Gene_editors_mice_v4.png?itok=zFptgH6x 1x" media="all and (min-width: 800px) and (max-width: 1339px)" type="image/png" width="641" height="451"> <source srcset="/files/styles/multiple_ct_header_tablet/public/Gene_editors_mice_v4.png?itok=ywRSUMhL 1x" media="all and (min-width: 540px) and (max-width: 799px)" type="image/png" width="706" height="417"> <source srcset="/files/styles/multiple_ct_header_phone/public/Gene_editors_mice_v4.png?itok=nIjg7r81 1x" media="all and (max-width: 539px)" type="image/png" width="499" height="294"> <img loading="eager" width="499" height="294" src="/files/styles/multiple_ct_header_phone/public/Gene_editors_mice_v4.png?itok=nIjg7r81" alt="Graphic showing particles delivering cargo to a mouse brain" title="Graphic showing particles delivering cargo to a mouse brain" typeof="foaf:Image"> </picture> </div> <div class="media-caption"> <div class="media-caption__credit"> Credit: Susanna Hamilton, ӳý Communications </div> <div class="media-caption__description"> Researchers have developed virus-like particles that can deliver gene-editing cargo to cells, including those in the mouse brain. </div> </div> </article> </div> </div> </div> </div> </div> </div> <div class="content-section container"> <div class="content-section__main"> <div class="block block-better-social-sharing-buttons block-social-sharing-buttons-block"> <div style="display: none"><link rel="preload" href="/modules/contrib/better_social_sharing_buttons/assets/dist/sprites/social-icons--no-color.svg" as="image" type="image/svg+xml" crossorigin="anonymous"></div> <div class="social-sharing-buttons"> <a href="https://www.facebook.com/sharer/sharer.php?u=/taxonomy/term/2236/feed&amp;title=" target="_blank" title="Share to Facebook" aria-label="Share to Facebook" class="social-sharing-buttons-button share-facebook" rel="noopener"> <svg aria-hidden="true" width="32px" height="32px" style="border-radius:100%;"> <use href="/modules/contrib/better_social_sharing_buttons/assets/dist/sprites/social-icons--no-color.svg#facebook" /> </svg> </a> <a href="https://twitter.com/intent/tweet?text=+/taxonomy/term/2236/feed" target="_blank" title="Share to X" aria-label="Share to X" class="social-sharing-buttons-button share-x" rel="noopener"> <svg aria-hidden="true" width="32px" height="32px" style="border-radius:100%;"> <use href="/modules/contrib/better_social_sharing_buttons/assets/dist/sprites/social-icons--no-color.svg#x" /> </svg> </a> <a href="mailto:?subject=&amp;body=/taxonomy/term/2236/feed" title="Share to Email" aria-label="Share to Email" class="social-sharing-buttons-button share-email" target="_blank" rel="noopener"> <svg aria-hidden="true" width="32px" height="32px" style="border-radius:100%;"> <use href="/modules/contrib/better_social_sharing_buttons/assets/dist/sprites/social-icons--no-color.svg#email" /> </svg> </a> </div> </div> <div class="block block-layout-builder block-field-blocknodelong-storyfield-content-paragraphs"> <div class="field field--name-field-content-paragraphs field--type-entity-reference-revisions field--label-hidden field__items"> <div class="field__item"> <div class="paragraph paragraph--type--text-with-sidebar text-with-sidebar"> <div class="field field--name-field-sidebar field--type-entity-reference-revisions field--label-hidden field__items"> <div class="field__item"> <div class="paragraph paragraph--type--sidebar-menu sidebar-menu"> <div class="sidebar-menu__col"> <div class="clearfix text-formatted field field--name-field-heading field--type-text field--label-hidden field__item"><p>Related News</p> </div> <div class="field field--name-field-links field--type-link field--label-hidden field__items"> <div class="field__item"><a href="/news/engineered-particles-efficiently-deliver-gene-editing-proteins-cells-mice">Engineered particles efficiently deliver gene editing proteins to cells in mice</a></div> <div class="field__item"><a href="/news/new-crispr-genome-editing-system-offers-wide-range-versatility-human-cells">New CRISPR genome editing system offers a wide range of versatility in human cells</a></div> </div> </div> </div> </div> </div> <div class="clearfix text-formatted field field--name-field-text field--type-text-long field--label-hidden field__item"><p>Prime editing, a versatile form of gene editing that can correct most known disease-causing genetic mutations, now has a new vehicle to deliver its machinery into cells in living animals.</p> <p>A team of researchers at the ӳý of MIT and Harvard has engineered virus-like particles to deliver prime editors to cells in mice at a high enough efficiency to rescue a genetic disorder. In the new work published today in <a href="https://www.nature.com/articles/s41587-023-02078-y"><em>Nature Biotechnology</em></a>, the team adapted engineered virus-like particles (eVLPs) that they had <a href="/news/engineered-particles-efficiently-deliver-gene-editing-proteins-cells-mice">previously designed to carry base editors</a> — another type of precision gene editor that makes single-letter changes in DNA.&nbsp;</p> <p>Now the researchers describe how they re-engineered both eVLPs and parts of the prime editing protein and RNA machinery to boost editing efficiency up to 170 times in human cells compared to the previous eVLPs that deliver base editors. The team used their new system to correct disease-causing mutations in the eyes of two mouse models of genetic blindness, partially restoring their vision. They also delivered prime editors to the mouse brain, and did not detect any off-target editing.</p> <p>“This study represents the first time to our knowledge that delivery of protein-RNA complexes has been used to achieve therapeutic prime editing in an animal,” said <a href="/node/8820">David Liu</a>, senior author of the study and Richard Merkin Professor and director of the Merkin Institute of Transformative Technologies in Healthcare at the ӳý. Liu is also a Howard Hughes Medical Institute investigator and a professor at Harvard University.</p> <h2>Delivery dilemma</h2> <p>Gene editing approaches promise to treat a range of diseases by precisely correcting genetic mutations that cause disease. Prime editing, <a href="/news/new-crispr-genome-editing-system-offers-wide-range-versatility-human-cells">described in 2019</a> by Liu’s group, can make longer and more diverse types of DNA changes than other types of editing. However, delivering the complex gene editing machinery to cells in living animals has been challenging.</p> <p>The prime editing system has three components: a Cas9 protein that can nick DNA; an engineered prime editing guide RNA (pegRNA) that specifies the location of the edit and also contains the new edited sequence to install at that location; and a reverse transcriptase that uses the pegRNA as a template to make specific changes to the DNA.</p> <p>Researchers have used a variety of methods to deliver these molecular machines to cells, including lipid nanoparticles and viruses. Virus-like particles (VLPs), composed of a shell of viral proteins that carry cargo but lack any viral genetic material, have also been of particular interest. But VLPs have traditionally yielded modest delivery outcomes in animals, and have to be specifically engineered for each different type of cargo to efficiently deliver to cells.</p> <p>“We initially hoped that we could just take the eVLPs that we had painstakingly developed and optimized for base editing and apply them to prime editors,” said Meirui An, a graduate student in the Liu lab and first author of the new paper. “But when we tried that, we observed almost no prime editing at all.”</p> <h2>Bottleneck breakthroughs</h2> <p>In the new work, the researchers extensively re-engineered both the eVLP proteins and the prime editing machinery itself so that both the delivery and editing systems worked more efficiently. For instance, they improved how the prime editing cargo was packaged in the eVLPs, how it was separated from the delivery vehicle, and how it was delivered into the target cells’ nuclei.</p> <p>“The prime editor cargo must be efficiently packaged into eVLPs when the particles form but must also be efficiently released from the particles after target cell entry,” said Aditya Raguram, a former Liu lab graduate student and co-author of the study. “All of these steps have to be carefully orchestrated in order to achieve efficient eVLP-mediated prime editing.”</p> <p>While each individual improvement led to small jumps in the efficiency of the prime editors, the changes together had a much larger impact.</p> <p>“When we combined everything together, we saw improvements of roughly 100-fold compared to the eVLPs that we started with,” said Liu. “That kind of improvement in efficiency should be enough to give us therapeutically relevant levels of prime editing, but we didn’t know for sure until we tested it in animals.”</p> <h2><em>In vivo</em> tests</h2> <p>Liu and his colleagues, in collaboration with Krzysztof Palczewski of the University of California, Irvine, first tested the system in mice to correct two different genetic mutations in the eyes. One mutation, in the gene <em>Mfrp</em>, causes a disease called retinitis pigmentosa that leads to progressive retinal degeneration. The other, in the gene <em>Rpe65</em>, is associated with blindness seen in the condition known as Leber congenital amaurosis (LCA) in humans.</p> <p>In both instances, the eVLPs corrected the mutation in up to 20 percent of the animals’ retina cells, partially restoring their vision.</p> <p>The research group also showed that the eVLPs loaded with prime editing machinery could effectively edit genes in the brains of living mice. Nearly half of all cells in the cortex of the brain that received the editing machinery showed a gene edit.</p> <p>“The gene editing field largely agrees that, moving into the future, gene editing machinery should ultimately be delivered as proteins to minimize potential side effects and we’ve now shown an effective way to do that,” said Liu. “We plan to continue to actively work on improving eVLPs and adapting the technology to target other tissue types within the body.”</p> </div> </div> </div> <div class="field__item"> <div class="paragraph paragraph--type--table-outro paragraph--view-mode--default"> <div class="field field--name-field-paragraph field--type-entity-reference-revisions field--label-hidden field__items"> <div class="field__item"> <div class="paragraph paragraph--type--table-outro-row paragraph--view-mode--default"> <div class="clearfix text-formatted field field--name-field-heading field--type-text field--label-hidden field__item"><p>Funding:</p> </div> <div class="clearfix text-formatted field field--name-field-text field--type-text-long field--label-hidden field__item"><p>Support for the study was provided in part by the National Institutes of Health, the Bill and Melinda Gates Foundation, the Howard Hughes Medical Institute, Foundation Fighting Blindness, the UC Irvine School of Medicine Dean’s office, a Research to Prevent Blindness unrestricted grant, and a National Science Foundation Graduate Research Fellowship.</p> </div> </div> </div> <div class="field__item"> <div class="paragraph paragraph--type--table-outro-row paragraph--view-mode--default"> <div class="clearfix text-formatted field field--name-field-heading field--type-text field--label-hidden field__item"><p>Paper cited:</p> </div> <div class="clearfix text-formatted field field--name-field-text field--type-text-long field--label-hidden field__item"><p>An, M. et al. Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. <a href="https://www.nature.com/articles/s41587-023-02078-y"><em>Nature Biotechnology</em></a>. Online January 8, 2024. DOI: 10.1038/s41587-023-02078-y&nbsp;</p> </div> </div> </div> </div> </div> </div> </div> </div> </div> </div> <div class="content-section container"> <div class="content-section__main"> <div class="block-node-broad-tags block block-layout-builder block-field-blocknodelong-storyfield-broad-tags"> <div class="block-node-broad-tags__row"> <div class="block-node-broad-tags__title">Tags:</div> <div class="field field--name-field-broad-tags field--type-entity-reference field--label-hidden field__items"> <div class="field__item"><a href="/broad-tags/liu-lab" hreflang="en">Liu Lab</a></div> <div class="field__item"><a href="/broad-tags/gene-editing" hreflang="en">Gene editing</a></div> <div class="field__item"><a href="/broad-tags/rare-disease" hreflang="en">Rare Disease</a></div> <div class="field__item"><a href="/broad-tags/gene-based-therapy-delivery" hreflang="en">Gene-based therapy delivery</a></div> </div> </div> </div> </div> </div> Mon, 08 Jan 2024 11:29:17 +0000 Corie Lok 5556226 at