Carolus H, Pierson S, Muñoz JF, et al. Genome-Wide Analysis of Experimentally Evolved Candida auris Reveals Multiple Novel Mechanisms of Multidrug Resistance. mBio. 2021;12(2). doi:10.1128/mBio.03333-20
Coleman JJ, Okoli I, Tegos GP, et al. Characterization of plant-derived saponin natural products against Candida albicans. ACS Chem Biol. 2010;5(3):321-32. doi:10.1021/cb900243b
Cuomo CA, Shea T, Yang B, Rao R, Forche A. Whole Genome Sequence of the Heterozygous Clinical Isolate 81-B-5. G3 (Bethesda). 2017;7(9):2883-2889. doi:10.1534/g3.117.043547
Rhodes J, Abdolrasouli A, Farrer RA, et al. Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen Candida auris. Emerg Microbes Infect. 2018;7(1):43. doi:10.1038/s41426-018-0045-x
Muñoz JF, Gade L, Chow NA, et al. Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat Commun. 2018;9(1):5346. doi:10.1038/s41467-018-07779-6
Ene IV, Farrer RA, Hirakawa MP, Agwamba K, Cuomo CA, Bennett RJ. Global analysis of mutations driving microevolution of a heterozygous diploid fungal pathogen. Proc Natl Acad Sci U S A. 2018;115(37):E8688-E8697. doi:10.1073/pnas.1806002115
McLellan CA, Vincent BM, Solis NV, et al. Inhibiting mitochondrial phosphate transport as an unexploited antifungal strategy. Nat Chem Biol. 2018;14(2):135-141. doi:10.1038/nchembio.2534
Quintin J, Saeed S, Martens JHA, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe. 2012;12(2):223-32. doi:10.1016/j.chom.2012.06.006
Cheng SC, Quintin J, Cramer RA, et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014;345(6204):1250684. doi:10.1126/science.1250684
Kleinnijenhuis J, Quintin J, Preijers F, et al. BCG-induced trained immunity in NK cells: Role for non-specific protection to infection. Clin Immunol. 2014;155(2):213-9. doi:10.1016/j.clim.2014.10.005