Kim S, Kim H, Kim S, et al. Machine Learning-Based Prediction of Substance Use in Adolescents in Three Independent Worldwide Cohorts: Algorithm Development and Validation Study. Journal of medical Internet research. 2025;27:e62805. doi:10.2196/62805
Nakase T, Guerra GA, Ostrom QT, et al. Genome-wide Polygenic Risk Scores Predict Risk of Glioma and Molecular Subtypes. Neuro-oncology. 2024. doi:10.1093/neuonc/noae112
Nakase T, Guerra GA, Ostrom QT, et al. Genome-wide Polygenic Risk Scores Predict Risk of Glioma and Molecular Subtypes. Neuro-oncology. 2024. doi:10.1093/neuonc/noae112
Deo AJ, Castro VM, Baker A, et al. Validation of an ICD-Code-Based Case Definition for Psychotic Illness Across Three Health Systems. Schizophrenia bulletin. 2024. doi:10.1093/schbul/sbae064
Deo AJ, Castro VM, Baker A, et al. Validation of an ICD-code-based case definition for psychotic illness across three health systems. medRxiv : the preprint server for health sciences. 2024. doi:10.1101/2024.02.28.24303443
Herranen P, Koivunen K, Palviainen T, et al. Genome-Wide Polygenic Score for Muscle Strength Predicts Risk for Common Diseases and Lifespan: A Prospective Cohort Study. The journals of gerontology. Series A, Biological sciences and medical sciences. 2024. doi:10.1093/gerona/glae064
Nakase T, Guerra G, Ostrom QT, et al. Genome-wide Polygenic Risk Scores Predict Risk of Glioma and Molecular Subtypes. medRxiv : the preprint server for health sciences. 2024. doi:10.1101/2024.01.10.24301112
Sheu YH, Sun J, Lee H, et al. An efficient landmark model for prediction of suicide attempts in multiple clinical settings. Psychiatry research. 2023;323:115175. doi:10.1016/j.psychres.2023.115175