Haggarty SJ, Clemons PA, Schreiber SL. Chemical genomic profiling of biological networks using graph theory and combinations of small molecule perturbations. J Am Chem Soc. 2003;125(35):10543-5. doi:10.1021/ja035413p
Pradines JR, Farutin V, Rowley S, Dančík V. Analyzing protein lists with large networks: edge-count probabilities in random graphs with given expected degrees. J Comput Biol. 2005;12(2):113-28. doi:10.1089/cmb.2005.12.113
Minică CC, Genovese G, Hultman CM, et al. The Weighting is the Hardest Part: On the Behavior of the Likelihood Ratio Test and the Score Test Under a Data-Driven Weighting Scheme in Sequenced Samples. Twin Res Hum Genet. 2017;20(2):108-118. doi:10.1017/thg.2017.7
Turley P, Walters RK, Maghzian O, et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat Genet. 2018;50(2):229-237. doi:10.1038/s41588-017-0009-4
Caicedo JC, Cooper S, Heigwer F, et al. Data-analysis strategies for image-based cell profiling. Nat Methods. 2017;14(9):849-863. doi:10.1038/nmeth.4397
Pan JQ, Baez-Nieto D, Allen A, Wang HR, Cottrell JR. Developing High-Throughput Assays to Analyze and Screen Electrophysiological Phenotypes. Methods Mol Biol. 2018;1787:235-252. doi:10.1007/978-1-4939-7847-2_18
Gibbons SM, Duvallet C, Alm EJ. Correcting for batch effects in case-control microbiome studies. PLoS Comput Biol. 2018;14(4):e1006102. doi:10.1371/journal.pcbi.1006102
Castel SE, Levy-Moonshine A, Mohammadi P, Banks E, Lappalainen T. Tools and best practices for data processing in allelic expression analysis. Genome Biol. 2015;16:195. doi:10.1186/s13059-015-0762-6
Tabb DL, Wang X, Carr SA, et al. Reproducibility of Differential Proteomic Technologies in CPTAC Fractionated Xenografts. J Proteome Res. 2016;15(3):691-706. doi:10.1021/acs.jproteome.5b00859
Beroukhim R, Getz G, Nghiemphu L, et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci U S A. 2007;104(50):20007-12. doi:10.1073/pnas.0710052104