Bing J, Hu T, Zheng Q, Muñoz JF, Cuomo CA, Huang G. Experimental Evolution Identifies Adaptive Aneuploidy as a Mechanism of Fluconazole Resistance in Candida auris. Antimicrob Agents Chemother. 2020;65(1). doi:10.1128/AAC.01466-20
Youngsaye W, Dockendorff C, Vincent B, et al. Overcoming fluconazole resistance in Candida albicans clinical isolates with tetracyclic indoles. Bioorg Med Chem Lett. 2012;22(9):3362-5. doi:10.1016/j.bmcl.2012.02.035
Chen Y, Farrer RA, Giamberardino C, et al. Microevolution of Serial Clinical Isolates of Cryptococcus neoformans var. grubii and C. gattii. MBio. 2017;8(2). doi:10.1128/mBio.00166-17
Kim SH, Iyer KR, Pardeshi L, et al. Genetic Analysis of Implicates Hsp90 in Morphogenesis and Azole Tolerance and Cdr1 in Azole Resistance. MBio. 2019;10(1). doi:10.1128/mBio.02529-18
McLellan CA, Vincent BM, Solis NV, et al. Inhibiting mitochondrial phosphate transport as an unexploited antifungal strategy. Nat Chem Biol. 2018;14(2):135-141. doi:10.1038/nchembio.2534
Rybak JM, Muñoz JF, Barker KS, et al. Mutations in TAC1B: a Novel Genetic Determinant of Clinical Fluconazole Resistance in Candida auris. mBio. 2020;11(3). doi:10.1128/mBio.00365-20
Nash A, Sewell T, Farrer RA, et al. MARDy: Mycology Antifungal Resistance Database. Bioinformatics. 2018;34(18):3233-3234. doi:10.1093/bioinformatics/bty321
Ford CB, Funt JM, Abbey D, et al. The evolution of drug resistance in clinical isolates of Candida albicans. Elife. 2015;4:e00662. doi:10.7554/eLife.00662