Tye MA, Payne C, Johansson C, et al. Elucidating the path to Plasmodium prolyl-tRNA synthetase inhibitors that overcome halofuginone resistance. Nat Commun. 2022;13(1):4976. doi:10.1038/s41467-022-32630-4
Suzuki T, Miller C, Guo LT, et al. Crystal structures reveal an elusive functional domain of pyrrolysyl-tRNA synthetase. Nat Chem Biol. 2017;13(12):1261-1266. doi:10.1038/nchembio.2497
Bryson DI, Fan C, Guo LT, Miller C, Söll D, Liu DR. Continuous directed evolution of aminoacyl-tRNA synthetases. Nat Chem Biol. 2017;13(12):1253-1260. doi:10.1038/nchembio.2474
Zhang X, Ling J, Barcia G, et al. Mutations in QARS, encoding glutaminyl-tRNA synthetase, cause progressive microcephaly, cerebral-cerebellar atrophy, and intractable seizures. Am J Hum Genet. 2014;94(4):547-58. doi:10.1016/j.ajhg.2014.03.003
Herman JD, Pepper LR, Cortese JF, et al. The cytoplasmic prolyl-tRNA synthetase of the malaria parasite is a dual-stage target of febrifugine and its analogs. Sci Transl Med. 2015;7(288):288ra77. doi:10.1126/scitranslmed.aaa3575
Novoa EM, de Pouplana LR. Cooperation for Better Inhibiting. Chem Biol. 2015;22(6):685-6. doi:10.1016/j.chembiol.2015.06.002
Liu DR, Schultz PG. Progress toward the evolution of an organism with an expanded genetic code. Proc Natl Acad Sci U S A. 1999;96(9):4780-5.
Liu DR, Magliery TJ, Schultz PG. Characterization of an ’orthogonal’ suppressor tRNA derived from E. coli tRNA2(Gln). Chem Biol. 1997;4(9):685-91.