The transcriptional landscape of age in human peripheral blood.
Authors | |
Keywords | |
Abstract | Disease incidences increase with age, but the molecular characteristics of ageing that lead to increased disease susceptibility remain inadequately understood. Here we perform a whole-blood gene expression meta-analysis in 14,983 individuals of European ancestry (including replication) and identify 1,497 genes that are differentially expressed with chronological age. The age-associated genes do not harbor more age-associated CpG-methylation sites than other genes, but are instead enriched for the presence of potentially functional CpG-methylation sites in enhancer and insulator regions that associate with both chronological age and gene expression levels. We further used the gene expression profiles to calculate the 'transcriptomic age' of an individual, and show that differences between transcriptomic age and chronological age are associated with biological features linked to ageing, such as blood pressure, cholesterol levels, fasting glucose, and body mass index. The transcriptomic prediction model adds biological relevance and complements existing epigenetic prediction models, and can be used by others to calculate transcriptomic age in external cohorts. |
Year of Publication | 2015
|
Journal | Nat Commun
|
Volume | 6
|
Pages | 8570
|
Date Published | 2015 Oct 22
|
ISSN | 2041-1723
|
DOI | 10.1038/ncomms9570
|
PubMed ID | 26490707
|
PubMed Central ID | PMC4639797
|
Links | |
Grant list | P30 DK063491 / DK / NIDDK NIH HHS / United States
R01 HL105756 / HL / NHLBI NIH HHS / United States
UL1 TR000124 / TR / NCATS NIH HHS / United States
R01HL105756 / HL / NHLBI NIH HHS / United States
|