Natural Barcodes for Longitudinal Single Cell Tracking of Leukemic and Immune Cell Dynamics.
Authors | |
Keywords | |
Abstract | Blood malignancies provide unique opportunities for longitudinal tracking of disease evolution following therapeutic bottlenecks and for the monitoring of changes in anti-tumor immunity. The expanding development of multi-modal single-cell sequencing technologies affords newer platforms to elucidate the mechanisms underlying these processes at unprecedented resolution. Furthermore, the identification of molecular events that can serve as barcodes now facilitate the tracking of the trajectories of malignant and of immune cell populations over time within primary human samples, as these permit unambiguous identification of the clonal lineage of cell populations within heterogeneous phenotypes. Here, we provide an overview of the potential for chromosomal copy number changes, somatic nuclear and mitochondrial DNA mutations, single nucleotide polymorphisms, and T and B cell receptor sequences to serve as personal natural barcodes and review technical implementations in single-cell analysis workflows. Applications of these methodologies include the study of acquired therapeutic resistance and the dissection of donor- and host cellular interactions in the context of allogeneic hematopoietic stem cell transplantation. |
Year of Publication | 2021
|
Journal | Front Immunol
|
Volume | 12
|
Pages | 788891
|
Date Published | 2021
|
ISSN | 1664-3224
|
DOI | 10.3389/fimmu.2021.788891
|
PubMed ID | 35046946
|
PubMed Central ID | PMC8761982
|
Links | |
Grant list | UG1 CA233338 / CA / NCI NIH HHS / United States
U24 CA224331 / CA / NCI NIH HHS / United States
P01 CA229092 / CA / NCI NIH HHS / United States
|