Methods, Tools and Current Perspectives in Proteogenomics.
Authors | |
Keywords | |
Abstract | With combined technological advancements in high-throughput next-generation sequencing and deep mass spectrometry-based proteomics, proteogenomics, the integrative analysis of proteomic and genomic data, has emerged as a new research field. Early efforts in the field were focused on improving protein identification using sample-specific genomic and transcriptomic sequencing data. More recently, integrative analysis of quantitative measurements from genomic and proteomic studies have identified novel insights into gene expression regulation, cell signaling, and disease. Many methods and tools have been developed or adapted to enable an array of integrative proteogenomic approaches and in this article, we systematically classify published methods and tools into four major categories, (1) Sequence-centric proteogenomics; (2) Analysis of proteogenomic relationships; (3) Integrative modeling of proteogenomic data; and (4) Data sharing and visualization. We provide a comprehensive review of methods and available tools in each category and highlight their typical applications. |
Year of Publication | 2017
|
Journal | Mol Cell Proteomics
|
Volume | 16
|
Issue | 6
|
Pages | 959-981
|
Date Published | 2017 06
|
ISSN | 1535-9484
|
DOI | 10.1074/mcp.MR117.000024
|
PubMed ID | 28456751
|
PubMed Central ID | PMC5461547
|
Links | |
Grant list | U24 CA210954 / CA / NCI NIH HHS / United States
U24 CA160034 / CA / NCI NIH HHS / United States
U24 CA159988 / CA / NCI NIH HHS / United States
U24 CA210986 / CA / NCI NIH HHS / United States
U24 CA210972 / CA / NCI NIH HHS / United States
U24 CA210979 / CA / NCI NIH HHS / United States
U24 CA160035 / CA / NCI NIH HHS / United States
|