Adeno-to-squamous transition drives resistance to KRAS inhibition in LKB1 mutant lung cancer.

Cancer cell
Authors
Keywords
Abstract

KRAS inhibitors (adagrasib and sotorasib) have shown clinical promise in targeting KRAS-mutated lung cancers; however, most patients eventually develop resistance. In lung patients with adenocarcinoma with KRAS and STK11/LKB1 co-mutations, we find an enrichment of the squamous cell carcinoma gene signature in pre-treatment biopsies correlates with a poor response to adagrasib. Studies of Lkb1-deficient KRAS and Kras lung cancer mouse models and organoids treated with KRAS inhibitors reveal tumors invoke a lineage plasticity program, adeno-to-squamous transition (AST), that enables resistance to KRAS inhibition. Transcriptomic and epigenomic analyses reveal ΔNp63 drives AST and modulates response to KRAS inhibition. We identify an intermediate high-plastic cell state marked by expression of an AST plasticity signature and Krt6a. Notably, expression of the AST plasticity signature and KRT6A at baseline correlates with poor adagrasib responses. These data indicate the role of AST in KRAS inhibitor resistance and provide predictive biomarkers for KRAS-targeted therapies in lung cancer.

Year of Publication
2024
Journal
Cancer cell
Date Published
02/2024
ISSN
1878-3686
DOI
10.1016/j.ccell.2024.01.012
PubMed ID
38402609
Links