Cytosolic dependent translation supports mitochondrial RNA processing.
Authors | |
Keywords | |
Abstract | Mitochondrial biogenesis relies on both the nuclear and mitochondrial genomes, and imbalance in their expression can lead to inborn errors of metabolism, inflammation, and aging. Here, we investigate N6AMT1, a nucleo-cytosolic methyltransferase that exhibits genetic codependency with mitochondria. We determine transcriptional and translational profiles of and report that it is required for the cytosolic translation of TRMT10C (MRPP1) and PRORP (MRPP3), two subunits of the mitochondrial RNAse P enzyme. In the absence of , or when its catalytic activity is abolished, RNA processing within mitochondria is impaired, leading to the accumulation of unprocessed and double-stranded RNA, thus preventing mitochondrial protein synthesis and oxidative phosphorylation, and leading to an immune response. Our work sheds light on the function of in protein synthesis and highlights a cytosolic program required for proper mitochondrial biogenesis. |
Year of Publication | 2024
|
Journal | Proceedings of the National Academy of Sciences of the United States of America
|
Volume | 121
|
Issue | 47
|
Pages | e2414187121
|
Date Published | 11/2024
|
ISSN | 1091-6490
|
DOI | 10.1073/pnas.2414187121
|
PubMed ID | 39503847
|
Links |