Brainstem neuropeptidergic neurons link a neurohumoral axis to satiation.

Cell
Authors
Keywords
Abstract

Hunger is evolutionarily hardwired to ensure that an animal has sufficient energy to survive and reproduce. Just as important as knowing when to start eating is knowing when to stop eating. Here, using spatially resolved single-cell phenotyping, we characterize a population of neuropeptidergic neurons in the brainstem's dorsal raphe nucleus (DRN) and describe how they regulate satiation. These neurons track food from sensory presentation through ingestion, integrate these signals with slower-acting humoral cues, and express cholecystokinin (CCK). These CCK neurons bidirectionally regulate meal size, driving a sustained meal termination signal with a built-in delay. They are also well positioned to sense and respond to ingestion: they express a host of metabolic signaling factors and are integrated into an extended network known to regulate feeding. Together, this work demonstrates how DRN CCK neurons regulate satiation and identifies a likely conserved cellular mechanism that transforms diverse neurohumoral signals into a key behavioral output.

Year of Publication
2025
Journal
Cell
Date Published
01/2025
ISSN
1097-4172
DOI
10.1016/j.cell.2025.01.018
PubMed ID
39914383
Links