Digital twins as global learning health and disease models for preventive and personalized medicine.

Genome medicine
Authors
Keywords
Abstract

Ineffective medication is a major healthcare problem causing significant patient suffering and economic costs. This issue stems from the complex nature of diseases, which involve altered interactions among thousands of genes across multiple cell types and organs. Disease progression can vary between patients and over time, influenced by genetic and environmental factors. To address this challenge, digital twins have emerged as a promising approach, which have led to international initiatives aiming at clinical implementations. Digital twins are virtual representations of health and disease processes that can integrate real-time data and simulations to predict, prevent, and personalize treatments. Early clinical applications of DTs have shown potential in areas like artificial organs, cancer, cardiology, and hospital workflow optimization. However, widespread implementation faces several challenges: (1) characterizing dynamic molecular changes across multiple biological scales; (2) developing computational methods to integrate data into DTs; (3) prioritizing disease mechanisms and therapeutic targets; (4) creating interoperable DT systems that can learn from each other; (5) designing user-friendly interfaces for patients and clinicians; (6) scaling DT technology globally for equitable healthcare access; (7) addressing ethical, regulatory, and financial considerations. Overcoming these hurdles could pave the way for more predictive, preventive, and personalized medicine, potentially transforming healthcare delivery and improving patient outcomes.

Year of Publication
2025
Journal
Genome medicine
Volume
17
Issue
1
Pages
11
Date Published
02/2025
ISSN
1756-994X
DOI
10.1186/s13073-025-01435-7
PubMed ID
39920778
Links