Speeding up drug susceptibility testing in Mycobacterium tuberculosis using RNA biomarkers.
Authors | |
Keywords | |
Abstract | BACKGROUND: Efficient management of drug-resistant tuberculosis relies on fast diagnostics. To accelerate phenotypic drug susceptibility testing [pDST] for Mycobacterium tuberculosis [TB], we introduce TRACeR-TB, a test that infers drug resistance from antibiotic-specific mRNA biomarkers.METHODS: To develop TRACeR-TB, target genes were first identified through RNA sequencing experiments conducted on two drug-exposed, susceptible strains for four antitubercular drugs. Based on these findings, we designed drug-specific multiplex Quantigene panels to quantify mRNA levels of 8-9 biomarkers per drug (class), directly from crude cell lysates. The performance of TRACeR-TB was compared to the widely used Mycobacteria Growth Indicator Tube [MGIT] pDST by subjecting 238 strains with diverse drug resistance profiles to both methods, and aligning results to genotypic data. Furthermore, we explored TRACeR-TB's potential for evaluating molecules that enhance antibiotic efficacy, and investigated its applicability in macrophage models to assess Mtb's intracellular stress responses to drugs.FINDINGS: Antituberculosis drugs trigger distinct transcriptional stress responses in susceptible, but not resistant bacilli, enabling a differentiation of the antibiotic phenotype in only 6 h. Validation on 238 strains showed TRACeR-TB had 100% (95% CI: 93·1-100%) sensitivity and 89·5% (95% CI: 74·7-97·2%) specificity compared to, respectively, 82·3% (95% CI: 69·2%-91·5%) and 94·8% (95% CI: 81·9%-99·4%) for MGIT pDST. TRACeR-TB specificity is likely underestimated due to the inclusion of isolates harbouring uncharacterised mutations. TRACeR-TB demonstrated 100% concordance with MGIT for drugs with reliable MGIT outcomes (moxifloxacin and isoniazid). Additionally, its sensitivity outperformed current rifampicin testing, detecting resistance in all borderline-resistant strains that MGIT missed, and bedaquiline testing. Furthermore, the assay detected the predicted effect of a novel drug booster and the intracellular drug-induced stress in macrophage models, highlighting its potential for drug optimisation.INTERPRETATION: TRACeR-TB is a complementary addition to current DSTs and can have a substantial impact on the TB diagnostics field. This tool can also play a vital role in identifying resistance mutations, thereby closing gaps in genotypic knowledge, and contribute to drug discovery and development.FUNDING: Institut Pasteur, Agence Nationale de la Recherche. |
Year of Publication | 2025
|
Journal | EBioMedicine
|
Volume | 113
|
Pages | 105611
|
Date Published | 02/2025
|
ISSN | 2352-3964
|
DOI | 10.1016/j.ebiom.2025.105611
|
PubMed ID | 40010155
|
Links |