Fetal-like reversion in the regenerating intestine is regulated by mesenchymal asporin.
Authors | |
Keywords | |
Abstract | Mesenchymal cells and the extracellular matrix (ECM) support epithelium during homeostasis and regeneration. However, the role of the mesenchyme in epithelial conversion into a fetal-like regenerative state after damage is not known. We modeled epithelial regeneration by culturing intestinal epithelium on decellularized small intestinal scaffolds (iECM) and identify asporin (Aspn), an ECM-bound proteoglycan, as a critical mediator of epithelial fetal-like reprogramming. After damage, transient increase in Aspn expression by the pericryptal fibroblasts induces epithelial transforming growth factor β (TGF-β)-signaling via CD44 and promotes timely epithelial reprogramming. Temporal control of Aspn is lost in old mice, and after damage, the persistently high level of Aspn stagnates epithelium in the regenerative state. Increase in Wnt signaling can resolve the stagnated regenerative program of the old epithelium, promoting restoration of tissue function. In summary, we establish a platform for modeling epithelial injury responses ex vivo and show that the mesenchymal Aspn-producing niche modulates tissue repair by regulating epithelial fetal-like reprogramming. |
Year of Publication | 2025
|
Journal | Cell stem cell
|
Date Published | 03/2025
|
ISSN | 1875-9777
|
DOI | 10.1016/j.stem.2025.02.009
|
PubMed ID | 40054463
|
Links |