Compressive Forces Induce Epigenetic Activation of Aged Human Dermal Fibroblasts Through ERK Signaling Pathway.

Aging cell
Authors
Keywords
Abstract

Age-related changes in human dermal fibroblasts (HDFs) contribute to impaired wound healing and skin aging. While these changes result in altered mechanotransduction, the epigenetic basis of rejuvenating aging cells remains a significant challenge. This study investigates the effects of compressive forces on nuclear mechanotransduction and epigenetic rejuvenation in aged HDFs. Using a compressive force application model, the activation of HDFs through alpha-smooth muscle actin (É‘-SMA) is demonstrated. Sustained compressive forces induce significant epigenetic modifications, including chromatin remodeling and altered histone methylation patterns. These epigenetic changes correlate with enhanced cellular migration and rejuvenation. Small-scale drug screening identifies the extracellular signal-regulated kinase (ERK) signaling pathway as a key mediator of compression-induced epigenetic activation. Furthermore, implanting aged cell spheroids into an aged skin model and subjecting the tissue to compressive forces resulted in increased collagen I protein levels. Collectively, these findings demonstrate that applying compressive force to aged fibroblasts activates global epigenetic changes through the ERK signaling pathway, ultimately rejuvenating cellular functions with potential applications for wound healing and skin tissue regeneration.

Year of Publication
2025
Journal
Aging cell
Pages
e70035
Date Published
03/2025
ISSN
1474-9726
DOI
10.1111/acel.70035
PubMed ID
40080399
Links