Binding domain mutations provide insight into CTCF's relationship with chromatin and its contribution to gene regulation.

Cell genomics
Authors
Keywords
Abstract

Here we used a series of CTCF mutations to explore CTCF's relationship with chromatin and its contribution to gene regulation. CTCF's impact depends on the genomic context of bound sites and the unique binding properties of WT and mutant CTCF proteins. Specifically, CTCF's signal strength is linked to changes in accessibility, and the ability to block cohesin is linked to its binding stability. Multivariate modeling reveals that both CTCF and accessibility contribute independently to cohesin binding and insulation, but CTCF signal strength has a stronger effect. CTCF and chromatin have a bidirectional relationship such that at CTCF sites, accessibility is reduced in a cohesin-dependent, mutant-specific fashion. In addition, each mutant alters TF binding and accessibility in an indirect manner, changes which impart the most influence on rewiring transcriptional networks and the cell's ability to differentiate. Collectively, the mutant perturbations provide a rich resource for determining CTCF's site-specific effects.

Year of Publication
2025
Journal
Cell genomics
Pages
100813
Date Published
03/2025
ISSN
2666-979X
DOI
10.1016/j.xgen.2025.100813
PubMed ID
40118069
Links