Systematic evaluation of single-cell multimodal data integration for comprehensive human reference atlas.

bioRxiv : the preprint server for biology
Authors
Abstract

The integration of multimodal single-cell data enables comprehensive organ reference atlases, yet its impact remains largely unexplored, particularly in complex tissues. We generated a benchmarking dataset for the renal cortex by integrating 3' and 5' scRNA-seq with joint snRNA-seq and snATAC-seq, profiling 119,744 high-quality nuclei/cells from 19 donors. To align cell identities and enable consistent comparisons, we developed the interpretable machine learning tool scOMM (single-cell Omics Multimodal Mapping) and systematically assessed integration strategies. "Horizontal" integration of scRNA and snRNA-seq improved cell-type identification, while "vertical" integration of snRNA-seq and snATAC-seq had an additive effect, enhancing resolution in homogeneous populations and difficult-to-identify states. Global integration was especially effective in identifying adaptive states and rare cell types, including WFDC2-expressing Thick Ascending Limb and Norn cells, previously undetected in kidney atlases. Our work establishes a robust framework for multimodal reference atlas generation, advancing single-cell analysis and extending its applicability to diverse tissues.

Year of Publication
2025
Journal
bioRxiv : the preprint server for biology
Date Published
03/2025
ISSN
2692-8205
DOI
10.1101/2025.03.06.637075
PubMed ID
40093094
Links