Small molecules enhance autophagy and reduce toxicity in Huntington's disease models.

Nat Chem Biol
Authors
Keywords
Abstract

The target of rapamycin proteins regulate various cellular processes including autophagy, which may play a protective role in certain neurodegenerative and infectious diseases. Here we show that a primary small-molecule screen in yeast yields novel small-molecule modulators of mammalian autophagy. We first identified new small-molecule enhancers (SMER) and inhibitors (SMIR) of the cytostatic effects of rapamycin in Saccharomyces cerevisiae. Three SMERs induced autophagy independently of rapamycin in mammalian cells, enhancing the clearance of autophagy substrates such as mutant huntingtin and A53T alpha-synuclein, which are associated with Huntington's disease and familial Parkinson's disease, respectively. These SMERs, which seem to act either independently or downstream of the target of rapamycin, attenuated mutant huntingtin-fragment toxicity in Huntington's disease cell and Drosophila melanogaster models, which suggests therapeutic potential. We also screened structural analogs of these SMERs and identified additional candidate drugs that enhanced autophagy substrate clearance. Thus, we have demonstrated proof of principle for a new approach for discovery of small-molecule modulators of mammalian autophagy.

Year of Publication
2007
Journal
Nat Chem Biol
Volume
3
Issue
6
Pages
331-8
Date Published
2007 Jun
ISSN
1552-4450
DOI
10.1038/nchembio883
PubMed ID
17486044
PubMed Central ID
PMC2635561
Links
Grant list
G0600194 / Medical Research Council / United Kingdom
G0600194(77639) / Medical Research Council / United Kingdom
064354 / Wellcome Trust / United Kingdom
GM38627 / GM / NIGMS NIH HHS / United States
N01CO12400 / CA / NCI NIH HHS / United States
Wellcome Trust / United Kingdom
N01-CO-12400 / CO / NCI NIH HHS / United States