Multiplexed Elimination of Wild-Type DNA and High-Resolution Melting Prior to Targeted Resequencing of Liquid Biopsies.
Authors | |
Keywords | |
Abstract | BACKGROUND: The use of clinical samples and circulating cell-free DNA (cfDNA) collected from liquid biopsies for diagnostic and prognostic applications in cancer is burgeoning, and improved methods that reduce the influence of excess wild-type (WT) portion of the sample are desirable. Here we present enrichment of mutation-containing sequences using enzymatic degradation of WT DNA. Mutation enrichment is combined with high-resolution melting (HRM) performed in multiplexed closed-tube reactions as a rapid, cost-effective screening tool before targeted resequencing. METHODS: We developed a homogeneous, closed-tube approach to use a double-stranded DNA-specific nuclease for degradation of WT DNA at multiple targets simultaneously. The No Denaturation Nuclease-assisted Minor Allele Enrichment with Probe Overlap (ND-NaME-PrO) uses WT oligonucleotides overlapping both strands on putative DNA targets. Under conditions of partial denaturation (DNA breathing), the oligonucleotide probes enhance double-stranded DNA-specific nuclease digestion at the selected targets, with high preference toward WT over mutant DNA. To validate ND-NaME-PrO, we used multiplexed HRM, digital PCR, and MiSeq targeted resequencing of mutated genomic DNA and cfDNA. RESULTS: Serial dilution of KRAS mutation-containing DNA shows mutation enrichment by 10- to 120-fold and detection of allelic fractions down to 0.01%. Multiplexed ND-NaME-PrO combined with multiplexed PCR-HRM showed mutation scanning of 10-20 DNA amplicons simultaneously. ND-NaME-PrO applied on cfDNA from clinical samples enables mutation enrichment and HRM scanning over 10 DNA targets. cfDNA mutations were enriched up to approximately 100-fold (average approximately 25-fold) and identified via targeted resequencing. CONCLUSIONS: Closed-tube homogeneous ND-NaME-PrO combined with multiplexed HRM is a convenient approach to efficiently enrich for mutations on multiple DNA targets and to enable prescreening before targeted resequencing. |
Year of Publication | 2017
|
Journal | Clin Chem
|
Volume | 63
|
Issue | 10
|
Pages | 1605-1613
|
Date Published | 2017 Oct
|
ISSN | 1530-8561
|
DOI | 10.1373/clinchem.2017.272849
|
PubMed ID | 28679646
|
PubMed Central ID | PMC5914173
|
Links | |
Grant list | P50 CA168504 / CA / NCI NIH HHS / United States
R33 CA217652 / CA / NCI NIH HHS / United States
|