Analyses of mRNA structure dynamics identify embryonic gene regulatory programs.
Authors | |
Keywords | |
Abstract | RNA folding plays a crucial role in RNA function. However, knowledge of the global structure of the transcriptome is limited to cellular systems at steady state, thus hindering the understanding of RNA structure dynamics during biological transitions and how it influences gene function. Here, we characterized mRNA structure dynamics during zebrafish development. We observed that on a global level, translation guides structure rather than structure guiding translation. We detected a decrease in structure in translated regions and identified the ribosome as a major remodeler of RNA structure in vivo. In contrast, we found that 3' untranslated regions (UTRs) form highly folded structures in vivo, which can affect gene expression by modulating microRNA activity. Furthermore, dynamic 3'-UTR structures contain RNA-decay elements, such as the regulatory elements in nanog and ccna1, two genes encoding key maternal factors orchestrating the maternal-to-zygotic transition. These results reveal a central role of RNA structure dynamics in gene regulatory programs. |
Year of Publication | 2018
|
Journal | Nat Struct Mol Biol
|
Volume | 25
|
Issue | 8
|
Pages | 677-686
|
Date Published | 2018 08
|
ISSN | 1545-9985
|
DOI | 10.1038/s41594-018-0091-z
|
PubMed ID | 30061596
|
PubMed Central ID | PMC6690192
|
Links | |
Grant list | R01 GM103789 / GM / NIGMS NIH HHS / United States
R01 GM101108 / GM / NIGMS NIH HHS / United States
K99 HD093873 / HD / NICHD NIH HHS / United States
R01 GM081602 / GM / NIGMS NIH HHS / United States
R35 GM122580 / GM / NIGMS NIH HHS / United States
R01 GM102251 / GM / NIGMS NIH HHS / United States
R01 HD074078 / HD / NICHD NIH HHS / United States
|