Methods for high-dimensional analysis of cells dissociated from cryopreserved synovial tissue

Arthritis Res Ther
Authors
Keywords
Abstract

BACKGROUND: Detailed molecular analyses of cells from rheumatoid arthritis (RA) synovium hold promise in identifying cellular phenotypes that drive tissue pathology and joint damage. The Accelerating Medicines Partnership RA/SLE Network aims to deconstruct autoimmune pathology by examining cells within target tissues through multiple high-dimensional assays. Robust standardized protocols need to be developed before cellular phenotypes at a single cell level can be effectively compared across patient samples.

METHODS: Multiple clinical sites collected cryopreserved synovial tissue fragments from arthroplasty and synovial biopsy in a 10% DMSO solution. Mechanical and enzymatic dissociation parameters were optimized for viable cell extraction and surface protein preservation for cell sorting and mass cytometry, as well as for reproducibility in RNA sequencing (RNA-seq). Cryopreserved synovial samples were collectively analyzed at a central processing site by a custom-designed and validated 35-marker mass cytometry panel. In parallel, each sample was flow sorted into fibroblast, T-cell, B-cell, and macrophage suspensions for bulk population RNA-seq and plate-based single-cell CEL-Seq2 RNA-seq.

RESULTS: Upon dissociation, cryopreserved synovial tissue fragments yielded a high frequency of viable cells, comparable to samples undergoing immediate processing. Optimization of synovial tissue dissociation across six clinical collection sites with ~ 30 arthroplasty and ~ 20 biopsy samples yielded a consensus digestion protocol using 100 Î¼g/ml of Liberaseâ„¢ TL enzyme preparation. This protocol yielded immune and stromal cell lineages with preserved surface markers and minimized variability across replicate RNA-seq transcriptomes. Mass cytometry analysis of cells from cryopreserved synovium distinguished diverse fibroblast phenotypes, distinct populations of memory B cells and antibody-secreting cells, and multiple CD4 and CD8 T-cell activation states. Bulk RNA-seq of sorted cell populations demonstrated robust separation of synovial lymphocytes, fibroblasts, and macrophages. Single-cell RNA-seq produced transcriptomes of over 1000 genes/cell, including transcripts encoding characteristic lineage markers identified.

CONCLUSIONS: We have established a robust protocol to acquire viable cells from cryopreserved synovial tissue with intact transcriptomes and cell surface phenotypes. A centralized pipeline to generate multiple high-dimensional analyses of synovial tissue samples collected across a collaborative network was developed. Integrated analysis of such datasets from large patient cohorts may help define molecular heterogeneity within RA pathology and identify new therapeutic targets and biomarkers.

Year of Publication
2018
Journal
Arthritis Res Ther
Volume
20
Issue
1
Pages
139
Date Published
2018 07 11
ISSN
1478-6362
DOI
10.1186/s13075-018-1631-y
PubMed ID
29996944
PubMed Central ID
PMC6042350
Links
Grant list
P30 DK063720 / DK / NIDDK NIH HHS / United States
R21 AR071670 / AR / NIAMS NIH HHS / United States
R01 AI046712 / AI / NIAID NIH HHS / United States
K01 AR066063 / AR / NIAMS NIH HHS / United States
T32 HG002295 / HG / NHGRI NIH HHS / United States
F31 AR070582 / AR / NIAMS NIH HHS / United States
UH2 AR067690 / AR / NIAMS NIH HHS / United States
R01 HL134375 / HL / NHLBI NIH HHS / United States
R01 AR046713 / AR / NIAMS NIH HHS / United States
U54 GM104938 / GM / NIGMS NIH HHS / United States
UM2 AR067678 / AR / NIAMS NIH HHS / United States
P30 AR069655 / AR / NIAMS NIH HHS / United States