Thrombospondin receptor α2δ-1 promotes synaptogenesis and spinogenesis via postsynaptic Rac1.

J Cell Biol
Authors
Abstract

Astrocytes control excitatory synaptogenesis by secreting thrombospondins (TSPs), which function via their neuronal receptor, the calcium channel subunit α2δ-1. α2δ-1 is a drug target for epilepsy and neuropathic pain; thus the TSP-α2δ-1 interaction is implicated in both synaptic development and disease pathogenesis. However, the mechanism by which this interaction promotes synaptogenesis and the requirement for α2δ-1 for connectivity of the developing mammalian brain are unknown. In this study, we show that global or cell-specific loss of α2δ-1 yields profound deficits in excitatory synapse numbers, ultrastructure, and activity and severely stunts spinogenesis in the mouse cortex. Postsynaptic but not presynaptic α2δ-1 is required and sufficient for TSP-induced synaptogenesis in vitro and spine formation in vivo, but an α2δ-1 mutant linked to autism cannot rescue these synaptogenesis defects. Finally, we reveal that TSP-α2δ-1 interactions control synaptogenesis postsynaptically via Rac1, suggesting potential molecular mechanisms that underlie both synaptic development and pathology.

Year of Publication
2018
Journal
J Cell Biol
Volume
217
Issue
10
Pages
3747-3765
Date Published
2018 Oct 01
ISSN
1540-8140
DOI
10.1083/jcb.201802057
PubMed ID
30054448
PubMed Central ID
PMC6168259
Links
Grant list
R01 NS096352 / NS / NINDS NIH HHS / United States
R01 NS102237 / NS / NINDS NIH HHS / United States
F32 NS083283 / NS / NINDS NIH HHS / United States
R01 NS094754 / NS / NINDS NIH HHS / United States
R01 DA031833 / DA / NIDA NIH HHS / United States