A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers.

Genome Biol
Authors
Keywords
Abstract

BACKGROUND: Human immunity relies on the coordinated responses of many cellular subsets and functional states. Inter-individual variations in cellular composition and communication could thus potentially alter host protection. Here, we explore this hypothesis by applying single-cell RNA-sequencing to examine viral responses among the dendritic cells (DCs) of three elite controllers (ECs) of HIV-1 infection.

RESULTS: To overcome the potentially confounding effects of donor-to-donor variability, we present a generally applicable computational framework for identifying reproducible patterns in gene expression across donors who share a unifying classification. Applying it, we discover a highly functional antiviral DC state in ECs whose fractional abundance after in vitro exposure to HIV-1 correlates with higher CD4 T cell counts and lower HIV-1 viral loads, and that effectively primes polyfunctional T cell responses in vitro. By integrating information from existing genomic databases into our reproducibility-based analysis, we identify and validate select immunomodulators that increase the fractional abundance of this state in primary peripheral blood mononuclear cells from healthy individuals in vitro.

CONCLUSIONS: Overall, our results demonstrate how single-cell approaches can reveal previously unappreciated, yet important, immune behaviors and empower rational frameworks for modulating systems-level immune responses that may prove therapeutically and prophylactically useful.

Year of Publication
2018
Journal
Genome Biol
Volume
19
Issue
1
Pages
10
Date Published
2018 01 29
ISSN
1474-760X
DOI
10.1186/s13059-017-1385-x
PubMed ID
29378643
PubMed Central ID
PMC5789701
Links
Grant list
R01 HL095791 / HL / NHLBI NIH HHS / United States
2U19AI089992 / National Institute of Allergy and Infectious Diseases / International
R21 AI106468 / AI / NIAID NIH HHS / United States
R01 AI087452 / AI / NIAID NIH HHS / United States
R01 AI078799 / AI / NIAID NIH HHS / United States
2R01HL095791 / HL / NHLBI NIH HHS / United States
U01 HG007910 / HG / NHGRI NIH HHS / United States
R01 AI098487 / AI / NIAID NIH HHS / United States
5U24AI118672 / National Institute of Allergy and Infectious Diseases / International
R56 AI098484 / AI / NIAID NIH HHS / United States
HL121890 / HL / NHLBI NIH HHS / United States
U01 MH105979 / MH / NIMH NIH HHS / United States
DP2 GM119419 / GM / NIGMS NIH HHS / United States
F31DE025176-01 / NH / NIH HHS / United States
GRFP / National Science Foundation / International
R33 AI116228 / AI / NIAID NIH HHS / United States
F31 DE025176 / DE / NIDCR NIH HHS / United States
U01MH105979 / MH / NIMH NIH HHS / United States
OPP 1066973 / Bill and Melinda Gates Foundation / International
AI116228 / Division of Intramural Research, National Institute of Allergy and Infectious Diseases / International
U01HG007910 / HG / NHGRI NIH HHS / United States
U19 AI089992 / AI / NIAID NIH HHS / United States
DP2OD020839 / GM / NIGMS NIH HHS / United States
U24 AI118672 / AI / NIAID NIH HHS / United States
Searle Scholars Program / Kinship Foundation / International
R56 HL126554 / HL / NHLBI NIH HHS / United States
R21 AI116228 / AI / NIAID NIH HHS / United States
R01 AI089339 / AI / NIAID NIH HHS / United States
P30 AI060354 / AI / NIAID NIH HHS / United States
RM1 HG006193 / HG / NHGRI NIH HHS / United States
2RM1HG006193 / HG / NHGRI NIH HHS / United States
R21 HL121890 / HL / NHLBI NIH HHS / United States
Beckman Young Investigator Program / Arnold and Mabel Beckman Foundation / International