Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas.

Cell Rep
Authors
Keywords
Abstract

Precision oncology uses genomic evidence to match patients with treatment but often fails to identify all patients who may respond. The transcriptome of these "hidden responders" may reveal responsive molecular states. We describe and evaluate a machine-learning approach to classify aberrant pathway activity in tumors, which may aid in hidden responder identification. The algorithm integrates RNA-seq, copy number, and mutations from 33 different cancer types across The Cancer Genome Atlas (TCGA) PanCanAtlas project to predict aberrant molecular states in tumors. Applied to the Ras pathway, the method detects Ras activation across cancer types and identifies phenocopying variants. The model, trained on human tumors, can predict response to MEK inhibitors in wild-type Ras cell lines. We also present data that suggest that multiple hits in the Ras pathway confer increased Ras activity. The transcriptome is underused in precision oncology and, combined with machine learning, can aid in the identification of hidden responders.

Year of Publication
2018
Journal
Cell Rep
Volume
23
Issue
1
Pages
172-180.e3
Date Published
2018 04 03
ISSN
2211-1247
DOI
10.1016/j.celrep.2018.03.046
PubMed ID
29617658
PubMed Central ID
PMC5918694
Links
Grant list
P30 CA016672 / CA / NCI NIH HHS / United States
U24 CA143882 / CA / NCI NIH HHS / United States
U54 HG003067 / HG / NHGRI NIH HHS / United States
U24 CA143835 / CA / NCI NIH HHS / United States
U24 CA143866 / CA / NCI NIH HHS / United States
U24 CA143845 / CA / NCI NIH HHS / United States
U24 CA143799 / CA / NCI NIH HHS / United States
U54 HG003273 / HG / NHGRI NIH HHS / United States
P30 CA008748 / CA / NCI NIH HHS / United States
U24 CA144025 / CA / NCI NIH HHS / United States
U24 CA143840 / CA / NCI NIH HHS / United States
U24 CA143843 / CA / NCI NIH HHS / United States
P30 ES013508 / ES / NIEHS NIH HHS / United States
U24 CA143858 / CA / NCI NIH HHS / United States
U24 CA143848 / CA / NCI NIH HHS / United States
U24 CA210957 / CA / NCI NIH HHS / United States
U54 HG003079 / HG / NHGRI NIH HHS / United States
U24 CA210949 / CA / NCI NIH HHS / United States
U24 CA143883 / CA / NCI NIH HHS / United States
R01 NS095411 / NS / NINDS NIH HHS / United States
R01 CA163722 / CA / NCI NIH HHS / United States
T32 HG000046 / HG / NHGRI NIH HHS / United States
U24 CA143867 / CA / NCI NIH HHS / United States
R50 CA221675 / CA / NCI NIH HHS / United States
U24 CA210990 / CA / NCI NIH HHS / United States