Mather KJ, Christophi CA, Jablonski KA, et al. Common variants in genes encoding adiponectin (ADIPOQ) and its receptors (ADIPOR1/2), adiponectin concentrations, and diabetes incidence in the Diabetes Prevention Program. Diabet Med. 2012;29(12):1579-88. doi:10.1111/j.1464-5491.2012.03662.x
Lamming DW, Ye L, Astle CM, Baur JA, Sabatini DM, Harrison DE. Young and old genetically heterogeneous HET3 mice on a rapamycin diet are glucose intolerant but insulin sensitive. Aging Cell. 2013;12(4):712-8. doi:10.1111/acel.12097
Radmanesh F, Devan WJ, Anderson CD, Rosand J, Falcone GJ, Alzheimer’s Disease Neuroimaging Initiative (ADNI). Accuracy of imputation to infer unobserved APOE epsilon alleles in genome-wide genotyping data. Eur J Hum Genet. 2014;22(10):1239-42. doi:10.1038/ejhg.2013.308
Consortium STD 2, Estrada K, Aukrust I, et al. Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA. 2014;311(22):2305-14. doi:10.1001/jama.2014.6511
Sinner MF, Tucker NR, Lunetta KL, et al. Integrating genetic, transcriptional, and functional analyses to identify 5 novel genes for atrial fibrillation. Circulation. 2014;130(15):1225-35. doi:10.1161/CIRCULATIONAHA.114.009892
Shen H, Cavallero S, Estrada KD, et al. Extracardiac control of embryonic cardiomyocyte proliferation and ventricular wall expansion. Cardiovasc Res. 2015;105(3):271-8. doi:10.1093/cvr/cvu269
Gesierich B, Opherk C, Rosand J, et al. APOE ɛ2 is associated with white matter hyperintensity volume in CADASIL. J Cereb Blood Flow Metab. 2016;36(1):199-203. doi:10.1038/jcbfm.2015.85
Pelleau S, Moss EL, Dhingra SK, et al. Adaptive evolution of malaria parasites in French Guiana: Reversal of chloroquine resistance by acquisition of a mutation in pfcrt. Proc Natl Acad Sci U S A. 2015;112(37):11672-7. doi:10.1073/pnas.1507142112
Hirakawa MP, Martinez DA, Sakthikumar S, et al. Genetic and phenotypic intra-species variation in Candida albicans. Genome Res. 2015;25(3):413-25. doi:10.1101/gr.174623.114
Vilhjálmsson BJ, Yang J, Finucane HK, et al. Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. Am J Hum Genet. 2015;97(4):576-92. doi:10.1016/j.ajhg.2015.09.001