Hatzios SK, Abel S, Martell J, et al. Chemoproteomic profiling of host and pathogen enzymes active in cholera. Nat Chem Biol. 2016;12(4):268-74. doi:10.1038/nchembio.2025
Beyaz S, Mana MD, Roper J, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature. 2016;531(7592):53-8. doi:10.1038/nature17173
Reshef DN, Reshef YA, Finucane HK, et al. Detecting novel associations in large data sets. Science. 2011;334(6062):1518-24. doi:10.1126/science.1205438
Graham DB, Lefkovith A, Deelen P, et al. TMEM258 Is a Component of the Oligosaccharyltransferase Complex Controlling ER Stress and Intestinal Inflammation. Cell Rep. 2016;17(11):2955-2965. doi:10.1016/j.celrep.2016.11.042
Sczesnak A, Segata N, Qin X, et al. The genome of th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment. Cell Host Microbe. 2011;10(3):260-72. doi:10.1016/j.chom.2011.08.005
Yilmaz Ömer H, Katajisto P, Lamming DW, et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature. 2012;486(7404):490-5. doi:10.1038/nature11163
Heath RJW, Leong JM, Visegrády B, Machesky LM, Xavier RJ. Bacterial and host determinants of MAL activation upon EPEC infection: the roles of Tir, ABRA, and FLRT3. PLoS Pathog. 2011;7(4):e1001332. doi:10.1371/journal.ppat.1001332
Knights D, Lassen KG, Xavier RJ. Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome. Gut. 2013;62(10):1505-10. doi:10.1136/gutjnl-2012-303954
Morgan XC, Huttenhower C. Meta’omic analytic techniques for studying the intestinal microbiome. Gastroenterology. 2014;146(6):1437-1448.e1. doi:10.1053/j.gastro.2014.01.049
Greenwood C, Morrow AL, Lagomarcino AJ, et al. Early empiric antibiotic use in preterm infants is associated with lower bacterial diversity and higher relative abundance of Enterobacter. J Pediatr. 2014;165(1):23-9. doi:10.1016/j.jpeds.2014.01.010