Paraboschi EM, Rimoldi V, Soldà G, et al. Functional variations modulating PRKCA expression and alternative splicing predispose to multiple sclerosis. Hum Mol Genet. 2014;23(25):6746-61. doi:10.1093/hmg/ddu392
Katz Y, Wang ET, Silterra J, et al. Quantitative visualization of alternative exon expression from RNA-seq data. Bioinformatics. 2015;31(14):2400-2. doi:10.1093/bioinformatics/btv034
Rivas MA, Pirinen M, Conrad DF, et al. Human genomics. Effect of predicted protein-truncating genetic variants on the human transcriptome. Science. 2015;348(6235):666-9. doi:10.1126/science.1261877
Melé M, Ferreira PG, Reverter F, et al. Human genomics. The human transcriptome across tissues and individuals. Science. 2015;348(6235):660-5. doi:10.1126/science.aaa0355
Arendt ML, Melin M, Tonomura N, et al. Genome-Wide Association Study of Golden Retrievers Identifies Germ-Line Risk Factors Predisposing to Mast Cell Tumours. PLoS Genet. 2015;11(11):e1005647. doi:10.1371/journal.pgen.1005647
Ruggles KV, Tang Z, Wang X, et al. An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events in Cancer. Mol Cell Proteomics. 2016;15(3):1060-71. doi:10.1074/mcp.M115.056226
Ulirsch JC, Nandakumar SK, Wang L, et al. Systematic Functional Dissection of Common Genetic Variation Affecting Red Blood Cell Traits. Cell. 2016;165(6):1530-45. doi:10.1016/j.cell.2016.04.048
Zhang X, Chen MH, Wu X, et al. Cell-Type-Specific Alternative Splicing Governs Cell Fate in the Developing Cerebral Cortex. Cell. 2016;166(5):1147-1162.e15. doi:10.1016/j.cell.2016.07.025
Pachter L, Batzoglou S, Spitkovsky VI, et al. A dictionary-based approach for gene annotation. J Comput Biol. 1999;6(3-4):419-30. doi:10.1089/106652799318364
Okazaki Y, Furuno M, Kasukawa T, et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature. 2002;420(6915):563-73. doi:10.1038/nature01266