Mertins P, Tang LC, Krug K, et al. Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry. Nat Protoc. 2018;13(7):1632-1661. doi:10.1038/s41596-018-0006-9
Myers SA, Rhoads A, Cocco AR, et al. Streamlined Protocol for Deep Proteomic Profiling of FAC-sorted Cells and Its Application to Freshly Isolated Murine Immune Cells. Mol Cell Proteomics. 2019;18(5):995-1009. doi:10.1074/mcp.RA118.001259
Archer TC, Ehrenberger T, Mundt F, et al. Proteomics, Post-translational Modifications, and Integrative Analyses Reveal Molecular Heterogeneity within Medulloblastoma Subgroups. Cancer Cell. 2018;34(3):396-410.e8. doi:10.1016/j.ccell.2018.08.004
Sarkizova S, Klaeger S, Le PM, et al. A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nat Biotechnol. 2020;38(2):199-209. doi:10.1038/s41587-019-0322-9
Udeshi ND, Mani DC, Satpathy S, et al. Rapid and deep-scale ubiquitylation profiling for biology and translational research. Nat Commun. 2020;11(1):359. doi:10.1038/s41467-019-14175-1
Ramanathan A, Schreiber SL. Multilevel regulation of growth rate in yeast revealed using systems biology. J Biol. 2007;6(2):3. doi:10.1186/jbiol56
Zecha J, Satpathy S, Kanashova T, et al. TMT Labeling for the Masses: A Robust and Cost-efficient, In-solution Labeling Approach. Mol Cell Proteomics. 2019;18(7):1468-1478. doi:10.1074/mcp.TIR119.001385
Schreiber SL, Nicolaou KC, Davies K. Diversity-oriented organic synthesis and proteomics. New frontiers for chemistry & biology. Chem Biol. 2002;9(1):1-2.
Cho KF, Branon TC, Rajeev S, et al. Split-TurboID enables contact-dependent proximity labeling in cells. Proc Natl Acad Sci U S A. 2020;117(22):12143-12154. doi:10.1073/pnas.1919528117
Smith G, Gerszten RE. Emerging Affinity-Based Proteomic Technologies for Large-Scale Plasma Profiling in Cardiovascular Disease. Circulation. 2017;135(17):1651-1664. doi:10.1161/CIRCULATIONAHA.116.025446