D’Aniello A, D’Onofrio G, Pischetola M, et al. Biological role of D-amino acid oxidase and D-aspartate oxidase. Effects of D-amino acids. J Biol Chem. 1993;268(36):26941-9.
D’Aniello A, Vetere A, Petrucelli L. Further study on the specificity of D-amino acid oxidase and D-aspartate oxidase and time course for complete oxidation of D-amino acids. Comp Biochem Physiol B. 1993;105(3-4):731-4.
Bryson DI, Fan C, Guo LT, Miller C, Söll D, Liu DR. Continuous directed evolution of aminoacyl-tRNA synthetases. Nat Chem Biol. 2017;13(12):1253-1260. doi:10.1038/nchembio.2474
Wolfson RL, Sabatini DM. The Dawn of the Age of Amino Acid Sensors for the mTORC1 Pathway. Cell Metab. 2017;26(2):301-309. doi:10.1016/j.cmet.2017.07.001
Nath AP, Ritchie SC, Byars SG, et al. An interaction map of circulating metabolites, immune gene networks, and their genetic regulation. Genome Biol. 2017;18(1):146. doi:10.1186/s13059-017-1279-y
Kim K, Jiang X, Cui J, et al. Interactions between amino acid-defined major histocompatibility complex class II variants and smoking in seropositive rheumatoid arthritis. Arthritis Rheumatol. 2015;67(10):2611-23. doi:10.1002/art.39228
Hu X, Deutsch AJ, Lenz TL, et al. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk. Nat Genet. 2015;47(8):898-905. doi:10.1038/ng.3353
Livny J, Waldor MK. Mining regulatory 5’UTRs from cDNA deep sequencing datasets. Nucleic Acids Res. 2010;38(5):1504-14. doi:10.1093/nar/gkp1121
McLaren PJ, Coulonges C, Bartha I, et al. Polymorphisms of large effect explain the majority of the host genetic contribution to variation of HIV-1 virus load. Proc Natl Acad Sci U S A. 2015;112(47):14658-63. doi:10.1073/pnas.1514867112
Ong SE, Mann M. Identifying and quantifying sites of protein methylation by heavy methyl SILAC. Curr Protoc Protein Sci. 2006;Chapter 14:Unit 14.9. doi:10.1002/0471140864.ps1409s46