Barrett L. Why both sides of the gender equation matter. eLife. 2022;11. doi:10.7554/eLife.78890
Barrett Lab
Fukuda A, Hazelbaker DZ, Motosugi N, et al. De novo DNA methyltransferases DNMT3A and DNMT3B are essential for XIST silencing for erosion of dosage compensation in pluripotent stem cells. Stem Cell Reports. 2021. doi:10.1016/j.stemcr.2021.07.015
Hazelbaker D, Beccard A, Angelini G, et al. A multiplexed gRNA piggyBac transposon system facilitates efficient induction of CRISPRi and CRISPRa in human pluripotent stem cells. Scientific reports. 2020;10(1):635. doi:10.1038/s41598-020-57500-1
Nehme R, Barrett L. Using human pluripotent stem cell models to study autism in the era of big data. Molecular autism. 2020;11(1):21. doi:10.1186/s13229-020-00322-9
Susco S, Arias-GarcÃa M, López-Huerta V, et al. FMR1 loss in a human stem cell model reveals early changes to intrinsic membrane excitability. Developmental biology. 2020;468(1-2):93-100. doi:10.1016/j.ydbio.2020.09.012
Berryer M, Kosmaczewski S, Barrett L. Fly model sheds light on brain disease. eLife. 2019;8. doi:10.7554/eLife.53233
Nehme R, Zuccaro E, Ghosh SD, et al. Combining NGN2 Programming with Developmental Patterning Generates Human Excitatory Neurons with NMDAR-Mediated Synaptic Transmission. Cell Rep. 2018;23(8):2509-2523. doi:10.1016/j.celrep.2018.04.066
Hazelbaker DZ, Beccard A, Bara AM, et al. A Scaled Framework for CRISPR Editing of Human Pluripotent Stem Cells to Study Psychiatric Disease. Stem Cell Reports. 2017;9(4):1315-1327. doi:10.1016/j.stemcr.2017.09.006
Herring A, Messana A, Bara AM, Hazelbaker DZ, Eggan K, Barrett LE. Generation of a TLE1 homozygous knockout human embryonic stem cell line using CRISPR-Cas9. Stem Cell Res. 2016;17(2):430-432. doi:10.1016/j.scr.2016.09.009
Bara AM, Messana A, Herring A, Hazelbaker DZ, Eggan K, Barrett LE. Generation of a TLE3 heterozygous knockout human embryonic stem cell line using CRISPR-Cas9. Stem Cell Res. 2016;17(2):441-443. doi:10.1016/j.scr.2016.09.008