AORTA Gene: Polygenic prediction improves detection of thoracic aortic aneurysm.

medRxiv : the preprint server for health sciences
Authors
Keywords
Abstract

BACKGROUND: Thoracic aortic disease is an important cause of morbidity and mortality in the US, and aortic diameter is a heritable contributor to risk. Could a polygenic prediction of ascending aortic diameter improve detection of aortic aneurysm?METHODS: Deep learning was used to measure ascending thoracic aortic diameter in 49,939 UK Biobank participants. A genome-wide association study (GWAS) was conducted in 39,524 participants and leveraged to build a 1.1 million-variant polygenic score with . Aortic diameter prediction models were built with the polygenic score ("AORTA Gene") and without it. The models were tested in a held-out set of 4,962 UK Biobank participants and externally validated in 5,469 participants from Mass General Brigham Biobank (MGB), 1,298 from the Framingham Heart Study (FHS), and 610 participants from .RESULTS: In each test set, the AORTA Gene model explained more of the variance in thoracic aortic diameter compared to clinical factors alone: 39.9% (95% CI 37.8-42.0%) vs 29.2% (95% CI 27.1-31.4%) in UK Biobank, 36.5% (95% CI 34.4-38.5%) vs 32.5% (95% CI 30.4-34.5%) in MGB, 41.8% (95% CI 37.7-45.9%) vs 33.0% (95% CI 28.9-37.2%) in FHS, and 34.9% (95% CI 28.8-41.0%) vs 28.9% (95% CI 22.9-35.0%) in . AORTA Gene had a greater AUROC for identifying diameter ≥4cm in each test set: 0.834 vs 0.765 (P=7.3E-10) in UK Biobank, 0.808 vs 0.767 in MGB (P=4.5E-12), 0.856 vs 0.818 in FHS (P=8.5E-05), and 0.827 vs 0.791 (P=7.8E-03) in .CONCLUSIONS: Genetic information improved estimation of thoracic aortic diameter when added to clinical risk factors. Larger and more diverse cohorts will be needed to develop more powerful and equitable scores.

Year of Publication
2023
Journal
medRxiv : the preprint server for health sciences
Date Published
08/2023
DOI
10.1101/2023.08.23.23294513
PubMed ID
37662232
Links