The genomic architecture of circulating cytokine levels points to drug targets for immune-related diseases.
Authors | |
Abstract | Circulating cytokines orchestrate immune reactions and are promising drug targets for immune-mediated and inflammatory diseases. Exploring the genetic architecture of circulating cytokine levels could yield key insights into causal mediators of human disease. Here, we performed genome-wide association studies (GWAS) for 40 circulating cytokines in meta-analyses of 74,783 individuals. We detected 359 significant associations between cytokine levels and variants in 169 independent loci, including 150 trans- and 19 cis-acting loci. Integration with transcriptomic data point to key regulatory mechanisms, such as the buffering function of the Atypical Chemokine Receptor 1 (ACKR1) acting as scavenger for multiple chemokines and the role of tumor necrosis factor receptor-associated factor 1 (TRAFD1) in modulating the cytokine storm triggered by TNF signaling. Applying Mendelian randomization (MR), we detected a network of complex cytokine interconnections with TNF-b, VEGF, and IL-1ra exhibiting pleiotropic downstream effects on multiple cytokines. Drug target cis-MR using 2 independent proteomics datasets paired with colocalization revealed G-CSF/CSF-3 and CXCL9/MIG as potential causal mediators of asthma and Crohn's disease, respectively, but also a potentially protective role of TNF-b in multiple sclerosis. Our results provide an overview of the genetic architecture of circulating cytokines and could guide the development of targeted immunotherapies. |
Year of Publication | 2025
|
Journal | Communications biology
|
Volume | 8
|
Issue | 1
|
Pages | 34
|
Date Published | 01/2025
|
ISSN | 2399-3642
|
DOI | 10.1038/s42003-025-07453-w
|
PubMed ID | 39794498
|
Links |