Arlotta P, Berninger B. Brains in metamorphosis: reprogramming cell identity within the central nervous system. Curr Opin Neurobiol. 2014;27:208-14. doi:10.1016/j.conb.2014.04.007
Amamoto R, Arlotta P. Development-inspired reprogramming of the mammalian central nervous system. Science. 2014;343(6170):1239882. doi:10.1126/science.1239882
Schwarz BA, Cetinbas M, Clement K, et al. Prospective Isolation of Poised iPSC Intermediates Reveals Principles of Cellular Reprogramming. Cell Stem Cell. 2018;23(2):289-305.e5. doi:10.1016/j.stem.2018.06.013
Miyamoto K, Nguyen KT, Allen GE, et al. Chromatin Accessibility Impacts Transcriptional Reprogramming in Oocytes. Cell Rep. 2018;24(2):304-311. doi:10.1016/j.celrep.2018.06.030
Warren CR, Cowan CA. Humanity in a Dish: Population Genetics with iPSCs. Trends Cell Biol. 2018;28(1):46-57. doi:10.1016/j.tcb.2017.09.006
Weissbein U, Ben-David U, Benvenisty N. Virtual karyotyping reveals greater chromosomal stability in neural cells derived by transdifferentiation than those from stem cells. Cell Stem Cell. 2014;15(6):687-91. doi:10.1016/j.stem.2014.10.018
Pasque V, Tchieu J, Karnik R, et al. X chromosome reactivation dynamics reveal stages of reprogramming to pluripotency. Cell. 2014;159(7):1681-97. doi:10.1016/j.cell.2014.11.040
Smith ZD, Nachman I, Regev A, Meissner A. Dynamic single-cell imaging of direct reprogramming reveals an early specifying event. Nat Biotechnol. 2010;28(5):521-6. doi:10.1038/nbt.1632
Liao J, Cui C. Generation and Characterization of Rat iPSCs. Methods Mol Biol. 2016;1357:133-48. doi:10.1007/7651_2015_200
Mikkelsen TS, Hanna J, Zhang X, et al. Dissecting direct reprogramming through integrative genomic analysis. Nature. 2008;454(7200):49-55. doi:10.1038/nature07056