Meier JA, Zhang F, Sanjana NE. GUIDES: sgRNA design for loss-of-function screens. Nat Methods. 2017;14(9):831-832. doi:10.1038/nmeth.4423
Lessard S, Francioli L, Alföldi J, et al. Human genetic variation alters CRISPR-Cas9 on- and off-targeting specificity at therapeutically implicated loci. Proc Natl Acad Sci U S A. 2017;114(52):E11257-E11266. doi:10.1073/pnas.1714640114
Shapiro RS, Chavez A, Collins JJ. CRISPR-based genomic tools for the manipulation of genetically intractable microorganisms. Nat Rev Microbiol. 2018;16(6):333-339. doi:10.1038/s41579-018-0002-7
Abadi S, Yan WX, Amar D, Mayrose I. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action. PLoS Comput Biol. 2017;13(10):e1005807. doi:10.1371/journal.pcbi.1005807
Scott DA, Zhang F. Implications of human genetic variation in CRISPR-based therapeutic genome editing. Nat Med. 2017;23(9):1095-1101. doi:10.1038/nm.4377
Price C, Gill S, Ho ZV, et al. Genome-Wide Interrogation of Human Cancers Identifies EGLN1 Dependency in Clear Cell Ovarian Cancers. Cancer Res. 2019;79(10):2564-2579. doi:10.1158/0008-5472.CAN-18-2674
Martin-Malpartida P, Batet M, Kaczmarska Z, et al. Structural basis for genome wide recognition of 5-bp GC motifs by SMAD transcription factors. Nat Commun. 2017;8(1):2070. doi:10.1038/s41467-017-02054-6
Raj B, Wagner DE, McKenna A, et al. Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nat Biotechnol. 2018;36(5):442-450. doi:10.1038/nbt.4103
Hazelbaker DZ, Beccard A, Bara AM, et al. A Scaled Framework for CRISPR Editing of Human Pluripotent Stem Cells to Study Psychiatric Disease. Stem Cell Reports. 2017;9(4):1315-1327. doi:10.1016/j.stemcr.2017.09.006
Kahn JD, Miller PG, Silver AJ, et al. -truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood. 2018;132(11):1095-1105. doi:10.1182/blood-2018-05-850339