Boehm JS, Garnett MJ, Adams DJ, et al. Cancer research needs a better map. Nature. 2021;589(7843):514-516. doi:10.1038/d41586-021-00182-0
Tangprasertchai NS, Di Felice R, Zhang X, et al. CRISPR-Cas9 Mediated DNA Unwinding Detected Using Site-Directed Spin Labeling. ACS Chem Biol. 2017;12(6):1489-1493. doi:10.1021/acschembio.6b01137
Chen L, Alexe G, Dharia NV, et al. CRISPR-Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. J Clin Invest. 2018;128(1):446-462. doi:10.1172/JCI90793
Castaldi PJ, Guo F, Qiao D, et al. Identification of Functional Variants in the FAM13A Chronic Obstructive Pulmonary Disease Genome-Wide Association Study Locus by Massively Parallel Reporter Assays. Am J Respir Crit Care Med. 2019;199(1):52-61. doi:10.1164/rccm.201802-0337OC
Bandopadhayay P, Piccioni F, O’Rourke R, et al. Neuronal differentiation and cell-cycle programs mediate response to BET-bromodomain inhibition in MYC-driven medulloblastoma. Nat Commun. 2019;10(1):2400. doi:10.1038/s41467-019-10307-9
Minton DR, Nam M, McLaughlin DJ, et al. Serine Catabolism by SHMT2 Is Required for Proper Mitochondrial Translation Initiation and Maintenance of Formylmethionyl-tRNAs. Mol Cell. 2018;69(4):610-621.e5. doi:10.1016/j.molcel.2018.01.024
Dharia NV, Kugener G, Guenther LM, et al. A first-generation pediatric cancer dependency map. Nat Genet. 2021;53(4):529-538. doi:10.1038/s41588-021-00819-w
Cong L. CRISPR: Groundbreaking technology for RNA-guided genome engineering. Anal Biochem. 2017;532:87-89. doi:10.1016/j.ab.2017.05.005
Schmid-Burgk JL. Disruptive non-disruptive applications of CRISPR/Cas9. Curr Opin Biotechnol. 2017;48:203-209. doi:10.1016/j.copbio.2017.06.001
Yeo NC, Chavez A, Lance-Byrne A, et al. An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat Methods. 2018;15(8):611-616. doi:10.1038/s41592-018-0048-5