Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016;351(6271):403-7. doi:10.1126/science.aad5143
Rosenbluh J, Mercer J, Shrestha Y, et al. Genetic and Proteomic Interrogation of Lower Confidence Candidate Genes Reveals Signaling Networks in β-Catenin-Active Cancers. Cell Syst. 2016;3(3):302-316.e4. doi:10.1016/j.cels.2016.09.001
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262-78. doi:10.1016/j.cell.2014.05.010
Zhang F. CRISPR-Cas9: Prospects and Challenges. Hum Gene Ther. 2015;26(7):409-10. doi:10.1089/hum.2015.29002.fzh
Lander ES. The Heroes of CRISPR. Cell. 2016;164(1-2):18-28. doi:10.1016/j.cell.2015.12.041
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533(7603):420-4. doi:10.1038/nature17946
Veres A, Gosis BS, Ding Q, et al. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell. 2014;15(1):27-30. doi:10.1016/j.stem.2014.04.020
Parnas O, Jovanovic M, Eisenhaure TM, et al. A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks. Cell. 2015;162(3):675-86. doi:10.1016/j.cell.2015.06.059
Doench JG, Fusi N, Sullender M, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016;34(2):184-91. doi:10.1038/nbt.3437
Hu JH, Davis KM, Liu DR. Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases. Cell Chem Biol. 2016;23(1):57-73. doi:10.1016/j.chembiol.2015.12.009