Schep AN, Wu B, Buenrostro JD, Greenleaf WJ. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat Methods. 2017;14(10):975-978. doi:10.1038/nmeth.4401
Ng B, White CC, Klein HU, et al. An xQTL map integrates the genetic architecture of the human brain’s transcriptome and epigenome. Nat Neurosci. 2017;20(10):1418-1426. doi:10.1038/nn.4632
Holmes MV, Pulit SL, Lindgren CM. Genetic and epigenetic studies of adiposity and cardiometabolic disease. Genome Med. 2017;9(1):82. doi:10.1186/s13073-017-0474-5
Luo H, Xi Y, Li W, et al. Cell identity bookmarking through heterogeneous chromatin landscape maintenance during the cell cycle. Hum Mol Genet. 2017;26(21):4231-4243. doi:10.1093/hmg/ddx312
Ernst J, Kellis M. Chromatin-state discovery and genome annotation with ChromHMM. Nat Protoc. 2017;12(12):2478-2492. doi:10.1038/nprot.2017.124
Shortt J, Ott CJ, Johnstone RW, Bradner JE. A chemical probe toolbox for dissecting the cancer epigenome. Nat Rev Cancer. 2017;17(3):160-183. doi:10.1038/nrc.2016.148
Yaffe MB. Predicting the future of signaling for 2018. Sci Signal. 2018;11(511). doi:10.1126/scisignal.aar7429
Fiziev P, Akdemir KC, Miller JP, et al. Systematic Epigenomic Analysis Reveals Chromatin States Associated with Melanoma Progression. Cell Rep. 2017;19(4):875-889. doi:10.1016/j.celrep.2017.03.078
Pinello L, Farouni R, Yuan GC. Haystack: systematic analysis of the variation of epigenetic states and cell-type specific regulatory elements. Bioinformatics. 2018;34(11):1930-1933. doi:10.1093/bioinformatics/bty031
Graff M, Scott RA, Justice AE, et al. Genome-wide physical activity interactions in adiposity - A meta-analysis of 200,452 adults. PLoS Genet. 2017;13(4):e1006528. doi:10.1371/journal.pgen.1006528