Rensvold JW, Ong SE, Jeevananthan A, Carr SA, Mootha VK, Pagliarini DJ. Complementary RNA and protein profiling identifies iron as a key regulator of mitochondrial biogenesis. Cell Rep. 2013;3(1):237-45. doi:10.1016/j.celrep.2012.11.029
Wang L, Shalek AK, Lawrence M, et al. Somatic mutation as a mechanism of Wnt/β-catenin pathway activation in CLL. Blood. 2014;124(7):1089-98. doi:10.1182/blood-2014-01-552067
Jeong SM, Xiao C, Finley LWS, et al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell. 2013;23(4):450-63. doi:10.1016/j.ccr.2013.02.024
Kiani S, Chavez A, Tuttle M, et al. Cas9 gRNA engineering for genome editing, activation and repression. Nat Methods. 2015;12(11):1051-4. doi:10.1038/nmeth.3580
Kim YK, Lee JS, Bi X, et al. The binding of fluorophores to proteins depends on the cellular environment. Angew Chem Int Ed Engl. 2011;50(12):2761-3. doi:10.1002/anie.201007626
Plovanich M, Bogorad RL, Sancak Y, et al. MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling. PLoS One. 2013;8(2):e55785. doi:10.1371/journal.pone.0055785
Van Allen EM, Wagle N, Stojanov P, et al. Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat Med. 2014;20(6):682-8. doi:10.1038/nm.3559
Vazquez F, Lim JH, Chim H, et al. PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell. 2013;23(3):287-301. doi:10.1016/j.ccr.2012.11.020
Slomovic S, Collins JJ. DNA sense-and-respond protein modules for mammalian cells. Nat Methods. 2015;12(11):1085-90. doi:10.1038/nmeth.3585
Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. 2013;31(9):839-43. doi:10.1038/nbt.2673