Yamano T, Zetsche B, Ishitani R, Zhang F, Nishimasu H, Nureki O. Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1. Mol Cell. 2017;67(4):633-645.e3. doi:10.1016/j.molcel.2017.06.035
Galonska C, Charlton J, Mattei AL, et al. Genome-wide tracking of dCas9-methyltransferase footprints. Nat Commun. 2018;9(1):597. doi:10.1038/s41467-017-02708-5
Ma P, Laibinis HH, Ernst CM, Hung DT. Carbapenem Resistance Caused by High-Level Expression of OXA-663 β-Lactamase in an OmpK36-Deficient Klebsiella pneumoniae Clinical Isolate. Antimicrob Agents Chemother. 2018;62(11). doi:10.1128/AAC.01281-18
Yates K, Bi K, Haining N, Cantor H, Kim HJ. Comparative transcriptome analysis reveals distinct genetic modules associated with Helios expression in intratumoral regulatory T cells. Proc Natl Acad Sci U S A. 2018;115(9):2162-2167. doi:10.1073/pnas.1720447115
Strecker J, Jones S, Koopal B, et al. Engineering of CRISPR-Cas12b for human genome editing. Nat Commun. 2019;10(1):212. doi:10.1038/s41467-018-08224-4
Wellington S, Hung DT. The Expanding Diversity of Mycobacterium tuberculosis Drug Targets. ACS Infect Dis. 2018;4(5):696-714. doi:10.1021/acsinfecdis.7b00255
Park SW, Casalena DE, Wilson DJ, et al. Target-based identification of whole-cell active inhibitors of biotin biosynthesis in Mycobacterium tuberculosis. Chem Biol. 2015;22(1):76-86. doi:10.1016/j.chembiol.2014.11.012
Myhrvold C, Freije CA, Gootenberg JS, et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science. 2018;360(6387):444-448. doi:10.1126/science.aas8836
Tang W, Liu DR. Rewritable multi-event analog recording in bacterial and mammalian cells. Science. 2018;360(6385). doi:10.1126/science.aap8992
Marsich E, Zuccato P, Rizzi S, Vetere A, Tonin E, Paoletti S. Helicobacter pylori expresses an autolytic enzyme: gene identification, cloning, and theoretical protein structure. J Bacteriol. 2002;184(22):6270-9.