Wulczyn KE, Shafi T, Anderson A, et al. Metabolites Associated With Uremic Symptoms in Patients With CKD: Findings From the Chronic Renal Insufficiency Cohort (CRIC) Study. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2024. doi:10.1053/j.ajkd.2023.11.013
Friedman SF, Ballentine G. Trajectories of sentiment in 11,816 psychoactive narratives. Human psychopharmacology. 2024;39(1):e2889. doi:10.1002/hup.2889
Unlu O, Fahed AC. Machine Learning in Invasive and Noninvasive Coronary Angiography. Current atherosclerosis reports. 2023;25(12):1025-1033. doi:10.1007/s11883-023-01178-z
Akshay A, Abedi M, Shekarchizadeh N, et al. MLcps: machine learning cumulative performance score for classification problems. GigaScience. 2022;12. doi:10.1093/gigascience/giad108
Peng C, May A, Abeel T. Unveiling microbial biomarkers of ruminant methane emission through machine learning. Frontiers in microbiology. 2023;14:1308363. doi:10.3389/fmicb.2023.1308363
Akshay A, Katoch M, Shekarchizadeh N, et al. Machine Learning Made Easy (MLme): a comprehensive toolkit for machine learning-driven data analysis. GigaScience. 2024;13. doi:10.1093/gigascience/giad111
Zheng EJ, Valeri JA, Andrews IW, et al. Discovery of antibiotics that selectively kill metabolically dormant bacteria. Cell chemical biology. 2023. doi:10.1016/j.chembiol.2023.10.026
Li T, Ferraro N, Strober BJ, et al. The functional impact of rare variation across the regulatory cascade. Cell genomics. 2023;3(10):100401. doi:10.1016/j.xgen.2023.100401
Akshay A, Katoch M, Shekarchizadeh N, et al. Machine Learning Made Easy (MLme): A Comprehensive Toolkit for Machine Learning-Driven Data Analysis. bioRxiv : the preprint server for biology. 2023. doi:10.1101/2023.07.04.546825
Shaban M, Bai Y, Qiu H, et al. MAPS: Pathologist-level cell type annotation from tissue images through machine learning. bioRxiv : the preprint server for biology. 2023. doi:10.1101/2023.06.25.546474