Yang SJ, Berndl M, Ando M, et al. Assessing microscope image focus quality with deep learning. BMC Bioinformatics. 2018;19(1):77. doi:10.1186/s12859-018-2087-4
Knijnenburg TA, Wang L, Zimmermann MT, et al. Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Rep. 2018;23(1):239-254.e6. doi:10.1016/j.celrep.2018.03.076
Way GP, Sanchez-Vega F, La K, et al. Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas. Cell Rep. 2018;23(1):172-180.e3. doi:10.1016/j.celrep.2018.03.046
Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ. Next-Generation Machine Learning for Biological Networks. Cell. 2018;173(7):1581-1592. doi:10.1016/j.cell.2018.05.015
Ott PA, Hu Z, Keskin DB, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547(7662):217-221. doi:10.1038/nature22991
Boehm JS, Garnett MJ, Adams DJ, et al. Cancer research needs a better map. Nature. 2021;589(7843):514-516. doi:10.1038/d41586-021-00182-0
Abadi S, Yan WX, Amar D, Mayrose I. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action. PLoS Comput Biol. 2017;13(10):e1005807. doi:10.1371/journal.pcbi.1005807
Iqbal S, Pérez-Palma E, Jespersen JB, et al. Comprehensive characterization of amino acid positions in protein structures reveals molecular effect of missense variants. Proc Natl Acad Sci U S A. 2020;117(45):28201-28211. doi:10.1073/pnas.2002660117
Li T, Kim A, Rosenbluh J, et al. GeNets: a unified web platform for network-based genomic analyses. Nat Methods. 2018;15(7):543-546. doi:10.1038/s41592-018-0039-6
Way GP, Kost-Alimova M, Shibue T, et al. Predicting cell health phenotypes using image-based morphology profiling. Mol Biol Cell. 2021;32(9):995-1005. doi:10.1091/mbc.E20-12-0784