Ding J, Regev A. Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces. Nat Commun. 2021;12(1):2554. doi:10.1038/s41467-021-22851-4
Anahtar M, Chan LW, Ko H, et al. Host protease activity classifies pneumonia etiology. Proc Natl Acad Sci U S A. 2022;119(25):e2121778119. doi:10.1073/pnas.2121778119
Chow YL, Singh S, Carpenter AE, Way GP. Predicting drug polypharmacology from cell morphology readouts using variational autoencoder latent space arithmetic. PLoS Comput Biol. 2022;18(2):e1009888. doi:10.1371/journal.pcbi.1009888
Radhakrishnan A, Stefanakis G, Belkin M, Uhler C. Simple, fast, and flexible framework for matrix completion with infinite width neural networks. Proc Natl Acad Sci U S A. 2022;119(16):e2115064119. doi:10.1073/pnas.2115064119
Agrawal S, Klarqvist MDR, Emdin C, et al. Selection of 51 predictors from 13,782 candidate multimodal features using machine learning improves coronary artery disease prediction. Patterns (N Y). 2021;2(12):100364. doi:10.1016/j.patter.2021.100364
Eulenberg P, Köhler N, Blasi T, et al. Reconstructing cell cycle and disease progression using deep learning. Nat Commun. 2017;8(1):463. doi:10.1038/s41467-017-00623-3
Caicedo JC, Cooper S, Heigwer F, et al. Data-analysis strategies for image-based cell profiling. Nat Methods. 2017;14(9):849-863. doi:10.1038/nmeth.4397
van Galen P, Hovestadt V, Ii MHW, et al. Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity. Cell. 2019;176(6):1265-1281.e24. doi:10.1016/j.cell.2019.01.031
Christiansen EM, Yang SJ, Ando M, et al. In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images. Cell. 2018;173(3):792-803.e19. doi:10.1016/j.cell.2018.03.040
Najm FJ, Strand C, Donovan KF, et al. Orthologous CRISPR-Cas9 enzymes for combinatorial genetic screens. Nat Biotechnol. 2018;36(2):179-189. doi:10.1038/nbt.4048