Ruderfer DM, Roberts DC, Schreiber SL, Perlstein EO, Kruglyak L. Using expression and genotype to predict drug response in yeast. PLoS One. 2009;4(9):e6907. doi:10.1371/journal.pone.0006907
Cassa CA, Weghorn D, Balick DJ, et al. Estimating the selective effects of heterozygous protein-truncating variants from human exome data. Nat Genet. 2017;49(5):806-810. doi:10.1038/ng.3831
Song W, Huang H, Zhang CZ, Bates DW, Wright A. Using whole genome scores to compare three clinical phenotyping methods in complex diseases. Sci Rep. 2018;8(1):11360. doi:10.1038/s41598-018-29634-w
Wieder N, Fink RHA, von Wegner F. Simulation Strategies for Calcium Microdomains and Calcium Noise. Adv Exp Med Biol. 2020;1131:771-797. doi:10.1007/978-3-030-12457-1_31
Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ. Next-Generation Machine Learning for Biological Networks. Cell. 2018;173(7):1581-1592. doi:10.1016/j.cell.2018.05.015
Forman JJ, Clemons PA, Schreiber SL, Haggarty SJ. SpectralNET--an application for spectral graph analysis and visualization. BMC Bioinformatics. 2005;6:260. doi:10.1186/1471-2105-6-260
Willems T, Zielinski D, Yuan J, Gordon A, Gymrek M, Erlich Y iv. Genome-wide profiling of heritable and de novo STR variations. Nat Methods. 2017;14(6):590-592. doi:10.1038/nmeth.4267
Li H, Bloom JM, Farjoun Y, et al. A synthetic-diploid benchmark for accurate variant-calling evaluation. Nat Methods. 2018;15(8):595-597. doi:10.1038/s41592-018-0054-7
Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. Nat Methods. 2020;17(2):155-158. doi:10.1038/s41592-019-0669-3
Chatterjee S, Chowdhury S, Mallick H, Banerjee P, Garai B. Group regularization for zero-inflated negative binomial regression models with an application to health care demand in Germany. Stat Med. 2018;37(20):3012-3026. doi:10.1002/sim.7804