Schwager E, Mallick H, Ventz S, Huttenhower C. A Bayesian method for detecting pairwise associations in compositional data. PLoS Comput Biol. 2017;13(11):e1005852. doi:10.1371/journal.pcbi.1005852
Young EM, Zhao Z, Gielesen BEM, et al. Iterative algorithm-guided design of massive strain libraries, applied to itaconic acid production in yeast. Metab Eng. 2018;48:33-43. doi:10.1016/j.ymben.2018.05.002
Wawer M, Bajorath J. Systematic extraction of structure-activity relationship information from biological screening data. ChemMedChem. 2009;4(9):1431-8. doi:10.1002/cmdc.200900222
Litichevskiy L, Peckner R, Abelin JG, et al. A Library of Phosphoproteomic and Chromatin Signatures for Characterizing Cellular Responses to Drug Perturbations. Cell Syst. 2018;6(4):424-443.e7. doi:10.1016/j.cels.2018.03.012
Auslander N, Cunningham CE, Toosi BM, et al. An integrated computational and experimental study uncovers FUT9 as a metabolic driver of colorectal cancer. Mol Syst Biol. 2017;13(12):956. doi:10.15252/msb.20177739
Lane WJ, Westhoff CM, Gleadall NS, et al. Automated typing of red blood cell and platelet antigens: a whole-genome sequencing study. Lancet Haematol. 2018;5(6):e241-e251. doi:10.1016/S2352-3026(18)30053-X
Abelin JG, Keskin DB, Sarkizova S, et al. Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction. Immunity. 2017;46(2):315-326. doi:10.1016/j.immuni.2017.02.007
Turley P, Walters RK, Maghzian O, et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat Genet. 2018;50(2):229-237. doi:10.1038/s41588-017-0009-4
Sarkizova S, Klaeger S, Le PM, et al. A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nat Biotechnol. 2020;38(2):199-209. doi:10.1038/s41587-019-0322-9
Ding J, Condon A, Shah SP. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat Commun. 2018;9(1):2002. doi:10.1038/s41467-018-04368-5