Pradines JR, Farutin V, Rowley S, Dančík V. Analyzing protein lists with large networks: edge-count probabilities in random graphs with given expected degrees. J Comput Biol. 2005;12(2):113-28. doi:10.1089/cmb.2005.12.113
Abadi S, Yan WX, Amar D, Mayrose I. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action. PLoS Comput Biol. 2017;13(10):e1005807. doi:10.1371/journal.pcbi.1005807
Shajii A, Numanagić I, Whelan C, Berger B. Statistical Binning for Barcoded Reads Improves Downstream Analyses. Cell Syst. 2018;7(2):219-226.e5. doi:10.1016/j.cels.2018.07.005
Ellrott K, Bailey MH, Saksena G, et al. Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. Cell Syst. 2018;6(3):271-281.e7. doi:10.1016/j.cels.2018.03.002
Anyansi C, Keo A, Walker BJ, et al. QuantTB - a method to classify mixed Mycobacterium tuberculosis infections within whole genome sequencing data. BMC Genomics. 2020;21(1):80. doi:10.1186/s12864-020-6486-3
Pradines J, Rudolph-Owen L, Hunter J, et al. Detection of activity centers in cellular pathways using transcript profiling. J Biopharm Stat. 2004;14(3):701-21. doi:10.1081/BIP-200025678
Cirino AL, Lakdawala NK, McDonough B, et al. A Comparison of Whole Genome Sequencing to Multigene Panel Testing in Hypertrophic Cardiomyopathy Patients. Circ Cardiovasc Genet. 2017;10(5). doi:10.1161/CIRCGENETICS.117.001768
Ching T, Himmelstein DS, Beaulieu-Jones BK, et al. Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface. 2018;15(141). doi:10.1098/rsif.2017.0387
Bailey MH, Tokheim C, Porta-Pardo E, et al. Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell. 2018;173(2):371-385.e18. doi:10.1016/j.cell.2018.02.060
Way GP, Kost-Alimova M, Shibue T, et al. Predicting cell health phenotypes using image-based morphology profiling. Mol Biol Cell. 2021;32(9):995-1005. doi:10.1091/mbc.E20-12-0784