Gebre M, Nomburg JL, Gewurz BE. CRISPR-Cas9 Genetic Analysis of Virus-Host Interactions. Viruses. 2018;10(2). doi:10.3390/v10020055
Hurlbut B, Jasanoff S, Saha K, et al. Building Capacity for a Global Genome Editing Observatory: Conceptual Challenges. Trends Biotechnol. 2018;36(7):639-641. doi:10.1016/j.tibtech.2018.04.009
Nishimasu H, Yamano T, Gao L, Zhang F, Ishitani R, Nureki O. Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1. Mol Cell. 2017;67(1):139-147.e2. doi:10.1016/j.molcel.2017.04.019
Song CQ, Jiang T, Richter M, et al. Adenine base editing in an adult mouse model of tyrosinaemia. Nat Biomed Eng. 2020;4(1):125-130. doi:10.1038/s41551-019-0357-8
Gaskell E. From Mechanism to Observation and Back Again. Mol Cell. 2016;62(5):649. doi:10.1016/j.molcel.2016.05.022
Lucas D, O’Leary HA, Ebert BL, Cowan CA, Tremblay CS. Utility of CRISPR/Cas9 systems in hematology research. Exp Hematol. 2017;54:1-3. doi:10.1016/j.exphem.2017.06.006
Chen H, Liu S, Padula S, et al. Efficient, continuous mutagenesis in human cells using a pseudo-random DNA editor. Nat Biotechnol. 2020;38(2):165-168. doi:10.1038/s41587-019-0331-8
Saha K, Hurlbut B, Jasanoff S, et al. Building Capacity for a Global Genome Editing Observatory: Institutional Design. Trends Biotechnol. 2018;36(8):741-743. doi:10.1016/j.tibtech.2018.04.008
Huang X, Zhou G, Wu W, et al. Genome editing abrogates angiogenesis in vivo. Nat Commun. 2017;8(1):112. doi:10.1038/s41467-017-00140-3
Galonska C, Charlton J, Mattei AL, et al. Genome-wide tracking of dCas9-methyltransferase footprints. Nat Commun. 2018;9(1):597. doi:10.1038/s41467-017-02708-5